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ABSTRACT
This paper presents a new trajectory search engine called Torch for
querying road network trajectory data. Torch is able to efficiently
process two types of typical queries (similarity search and Boolean
search), and support a wide variety of trajectory similarity func-
tions. Additionally, we propose a new similarity function LORS in
Torch to measure the similarity in a more effective and efficient
manner. Indexing and search in Torch works as follows. First, each
raw vehicle trajectory is transformed to a set of road segments
(edges) and a set of crossings (vertices) on the road network. Then a
lightweight edge and vertex index called LEVI is built. Given a query,
a filtering framework over LEVI is used to dynamically prune the
trajectory search space based on the similarity measure imposed.
Finally, the result set (ranked or Boolean) is returned. Extensive
experiments on real trajectory datasets verify the effectiveness and
efficiency of Torch.
ACM Reference Format:
Sheng Wang, Zhifeng Bao, J. Shane Culpepper, Zizhe Xie, Qizhi Liu, and Xi-
aolin Qin. 2018. Torch: A Search Engine for Trajectory Data. In SIGIR ’18:
The 41st International ACM SIGIR Conference on Research and Development
in Information Retrieval, July 8–12, 2018, Ann Arbor, MI, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3209978.3209989

1 INTRODUCTION
Equipped with Global Positioning System (GPS) devices, vehicles
can now use various location-based services such as Waze to nav-
igate complex road networks. By sampling a series of points of a
vehicle path along the road network at fixed time intervals, a trajec-
tory can be recorded using three features: 1) Network-constrained,
as most trajectories travel in a fixed road network [19]; 2) Varying
sample rates – every trace from a same path can be sampled to a dif-
ferent number of points; 3) Errors as a result of low GPS accuracy. A
wide variety of trajectory search queries [3, 10, 17–19, 32, 33, 36, 38]
have been proposed over the years to support various location-
based services such as transportation monitoring and planning
[47], or ranked retrieval, as shown in Example 1.
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Example 1. To monitor vehicles passing through Manhattan, a
user would issue a range query. To monitor all cars that use Wall
Street, a path query [19] would be issued. Further, a strict path
query would identify every vehicle that traverse all of Wall Street.
These three kinds of queries are Boolean trajectory search queries.
Given a trajectory, a top-k trajectory similarity search query
returns the k highest ranked trajectories based on a similarity met-
ric [12, 47], which can be used to investigate driving habits [5], cluster
trajectories to discover popular routes [46], or search over all of the tra-
jectories which have a pre-specified trajectory as a k nearest neighbor
– a task used in transportation route planning [42].

It is desirable to support all of these search queries in a single
trajectory search engine. Furthermore, there are several commonly
used similarity measures to determine the relevance between two
trajectories (details in Section 2), each with its ownmerits. However,
the effectiveness of these similarity measures has only been evalu-
ated in domain specific search scenarios such as time series [4, 45].
The lack of an efficient trajectory search engine capable of support-
ing different similarity measures makes it very difficult to carry out
careful effectiveness evaluations. For example, existing trajectory
systems [2, 7, 41] only support trajectory storage and simple query-
ing, but cannot perform top-k similarity search. In this paper, we
devise a trajectory search engine capable of supporting a richer set
of complex queries and similarity measures.

The two primary goals of a search engine are effectiveness (qual-
ity) and efficiency (speed) [6]. These two desiderata are often in
tension with each other. Due to the varying sampling rates of trajec-
tories, existing similarity measures are rarely efficient and effective
enough to search even modest sized trajectory collections (Details
in 4.1). Moreover, the effectiveness evaluation of top-k similarity
search over trajectories currently rely on improving the classifica-
tion precision of time series data. Determining whether a similarity
measure can classify a set of trajectories into the corresponding
labeled ground-truth, such as by Chen et al. [4], is not a sufficient
approach when evaluating the quality of a search engine.

To achieve scalable efficiency, a space-efficient index representa-
tion and processing framework is crucial, but existing indexes for
trajectory search [28, 31, 38] rely on an R-tree [14], which stores all
points from the raw trajectories. They often require a prodigious
amount of space in order to accelerate search, and the pruning
method originally devised for point search is not effective for tra-
jectory search as many of the similarity measures are non-metric1.

1https://en.wikipedia.org/wiki/Metric_(mathematics)
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Figure 1: An overview of Torch.

Inspired by these observations, we design and implement Torch,
that contains the three modules shown in Figure 1. First, pre-
processing derived from map matching [22] projects raw trajecto-
ries to a succinct path, where each mapped trajectory is represented
by a list of vertices and edges in a road network. Based on this
new representation, a new similarity measure (LORS) is developed
which can significantly improve the effectiveness and efficiency
of similarity search in real data collections. The processing speed
is further improved by using a lightweight edge and vertex index
(LEVI), which is highly compressable using standard integer list
compression techniques. Top-k search using both LORS and ex-
isting similarity measures can be performed efficiently using the
unified dynamic pruning algorithm presented in this paper. In ad-
dition, Boolean trajectory search can be performed efficiently in
a manner similar to Boolean processing in Information Retrieval
systems [9]. Finally, the search results from all similarity measures
can be evaluated using a new path-based ground truth set.
In summary, we make the following contributions:
• We present Torch, a trajectory search engine which integrates
pre-processing, indexing, querying and evaluation.
• We propose a novel trajectory similarity measure – longest over-
lapped road segments (LORS) based on the overlapped segments
between query and trajectory data (Section 4).
• We propose a unified index – LEVI with compression (Section 5),
and an efficient search paradigm (Section 6) to support similarity
and Boolean search over trajectories.
• We employ Torch to conduct a comprehensive efficiency and
effectiveness evaluation of similarity measures using two real
taxi trajectory datasets (Section 7).

2 RELATEDWORK
Boolean Trajectory Search.A Boolean trajectory search includes
three main types of queries. The first one is a Range Query (RQ) [19,
21, 32, 33, 35] that finds all trajectories located in a spatial region.
The second is a Path Query (PQ) which retrieves the trajectories that
contain any edge of the given path query. The third is a Strict Path
Query (SPQ) [17–19, 33] which finds all trajectories that strictly
follow the entire path from beginning to end. Interestingly, the
path query and strict path query share many commonalities with
disjunctive (OR) and conjunctive (AND) Boolean queries [23]. The
main difference is that an SPQ is order-sensitive.
Trajectory SimilarityMeasures.As a trajectory can be viewed as
a time series, many similarity measures originally designed for time
series search can be deployed in trajectory similarity search [52],

such as Dynamic Time Warping (DTW) [50], Longest Common
Subsequence (LCSS) [25, 39], and Edit Distance on Real sequence
(EDR) [3]. These similarity measures were designed to make search
more robust against local time shifting and noise. An effectiveness
evaluation of these similarity measures over time series data [4]
was performed by Wang et al. [45].

As a trajectory can also be viewed as a geometric curve, similarity
measures between curves can also be used for trajectory similarity
search [47]. For example, Hausdorff distance [27, 32] measures
how far two subsets of a metric space are from each other. Fréchet
distance [1] extends the Hausdorff distance to account for location
and ordering of the points along the curves.

By revisiting the above similarity measures in two different con-
texts, we make three observations. (1) The similarity computation is
a procedure to match points without violating an order constraint,
and we refer to these measures as a point-based similarity measure.
(2) To the best of our knowledge, the effectiveness of common simi-
larity measures for both time series and geometric curves have not
been evaluated for real vehicle trajectory data. (3) These similarity
measures are sensitive to sampling rate [40], as sampling more or
fewer points will affect the overall similarity.
Pruning for Similarity Search. The R-tree [14] is a popular spa-
tial index for point data which can be extended to support pointwise
trajectory data. Trajectory datasets like T-drive [51] can have mil-
lions of points, and an R-tree has to manage a huge number of
maximum bounding rectangles (MBR), which is not space efficient
in practice. A simple grid index can be a more useful index structure
in such scenarios [5, 43]. For search, most of the existing approaches
use MBR-based pruning, as MBR intersection with the query trajec-
tory can be used to prune out irrelevant trajectories [16]. Bounded
computations are another method used to accelerate search [30, 39].
This is achieved by estimating the upper bound of the similarity
score and comparing it with the current top-k result set to deter-
mine if the exact distance must be computed. This approach is often
referred to as early abandoning [30].

3 PROBLEM DEFINITION
3.1 Data Model

Definition 1. (Point) A point p = {p.lat,p.lng,p.t} contains the
spatio-temporal information, which includes latitude p.lat, longitude
p.lng and time-stamp p.t .

Definition 2. (Raw Trajectory) A trajectory T of length n is in
the form of {p1,p2, . . . ,pn }, where each pi is a point.

Definition 3. (Road Network) A road network is a graph G =
(V ,E), where V is a set of vertices v representing the intersections
and terminal points of the road segments, and E is a set of edges e
representing road segments.

Definition 4. (Path) A path P is composed by a set of connected
road segments e1 → e2 → . . .→ en+1 in G.

The object that passes the path P inG can be sampled as different
raw trajectories SP = {T1,T2, · · · ,Tm }. SP may be lossy, as it may
not store all of the information from the original path P . So, it
is essential to transform SP to the original path P , especially for
trajectory-based applications [22]. This is commonly referred to as
map matching [22, 26], and defined as:
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Figure 2: Original routes and sampled raw trajectories over a road
network with edge e and vertex v .

Definition 5. (Map-Matched Trajectory) Given a raw trajec-
tory T and a road network G, the map-matched segment-trajectory
T is a set of connected road segments projected from GPS points in
T onto the road segments in G, such that T : e1 → e2 → . . . → en .
Further, the map-matched vertex-trajectory ÜT is a set of connected
graph vertices in G, such that ÜT : v1 → v2 → . . . → vn+1, and

ei = (vi ,vi+1). This mapping procedure is denoted as T
G
−→ (T , ÜT ).

Figure 2 shows two raw trajectories T1 and T2, and a query Q ,
where a solid dot represents a point of the trajectory. T1 = {p1,p2}
and T2 = {p3,p4,p5} can be mapped to the path (dotted line) in a
road network (hollow dots) and represented by edges {e3, e1} and
{e4, e2}, or by vertices {v1,v2,v3} and {v4,v3,v8}, respectively.
Several open-source libraries or APIs are also available.2,3

3.2 Query Model
Definition 6. (Boolean Trajectory Search (BTS)) Given a tra-

jectory database D = {T1, . . . ,T |D |} and query constraint Q , a
Boolean Trajectory Search retrieves the trajectories in three ways:

RQ(Qr ) = {T ∈ D|∃pi ∈ T (pi ∈ Qr )} (1)

PQ(Qp ) = {T ∈ D|∃ei ∈ T , ej ∈ Qp (ei = ej )} (2)
SPQ(Qp ) = {T ∈ D|∃i, j(T i j = Qp )} (3)

where T i j = {ei , ei+1, · · · , ej } is the sub-trajectory of T , Qr is a
rectangular region, and Qp is a path in G.

Definition 7. (Trajectory Similarity Search (TSS)) Given a
trajectory database D = {T1, . . . ,T |D |} and query trajectory Q =
{q1,q2, · · · ,q |Q |}, a Top-k Trajectory Similarity Search retrieves a
set Ds ⊆ D with k trajectories such that: ∀T ∈ Ds ,∀T ′ ∈ D −
Ds , Ŝ(Q,T ) > Ŝ(Q,T

′

).

Here, Ŝ is the similarity function between two trajectories.
Given two raw trajectories T1 and T2 or the map-matched vertex-
trajectories ÜT1 and ÜT2, the similarity between Ŝ(T1,T2) and Ü̂S( ÜT1, ÜT2)
can be computed using most existing functions, such as DTW [50],
LCSS [39], EDR [3], Hausdorff [27] and Fréchet distance [1].4

4 A SEGMENT-BASED SIMILARITY MEASURE
4.1 Point-based Similarity
LCSS [39] measures the common subsequence of two trajectories,
similar to the longest common sub-string matching problem, where
two points are treated as matched when they have a distance less
than a pre-defined threshold τ . For example in Figure 2, given a
queryQ , the LCSS similarity will be Ŝ(Q,T1) =m(q1,p1)+m(q2,p1),

2https://github.com/graphhopper/map-matching
3https://www.mapbox.com/
4Distance functions such asDTW and EDR can be easily converted to a similarity

function using renormalization.

Ŝ(Q,T2) = m(q1,p4) +m(q2,p5), where m denotes the matching
relationship between points that have a distance less than τ . We
can find that the point pairs do not match well for raw trajectories
when two points far apart are chosen to match, such as p1 and q1.
After the map matching transformation, the points are calibrated
by edges and vertices, and point-matching can be used to identify
similar trajectories. For example, the similarities of trajectories:
ÜQ = {v2,v3,v8}, ÜT1 = {v1,v2,v3}, ÜT2 = {v4,v3,v8}, are computed
as Ü̂S( ÜQ, ÜT1) = m(v2,v2) + m(v3,v3) = 2, Ü̂S( ÜQ, ÜT2) = m(v3,v3) +
m(v8,v8) = 2, where each matchingm has a reward of 1.

However, it can be easily observed thatT1 andT2 are not different
from Q in term of similarity, while T2 shares a longer overlap with
Q than T1 and should be more similar to Q . Such an overlapping
relationship of road segments is not captured in any of the existing
point-based similarity measures. Moreover, the cost of computing
point-based similarity measures is high, as the Euclidean distance
computation needs to be performed for every matching point pair
by accessing the locations of the points. In order to solve the above
two problems, we propose a parameter-free similarity model based
on segments rather than points.

4.2 Longest Overlapping Road Segments
Inspired by LCSS [39], we define the Longest Overlapping Road
Segment (LORS) to measure the similarity between two map-
matched segment-trajectories. Let T 1 and T 2 be two map-matched
segment-trajectories of T1 and T2, where T 1 = (e11, ..., e1n ) and
T 2 = (e21, ..., e2m ).

Definition 8. (LORS) The Longest Overlapping Road Segment

Similarity Ŝ(T 1,T 2) is defined as:

Ŝ(T 1,T 2) =


0, if T 1 or T 2 is empty

|e1n | + Ŝ(H(T 1),H(T 2)), if e1n = e2m

max(Ŝ(H(T 1),T 2), Ŝ(T 1,H(T 2))), otherwise

(4)

where |e1n | is the travel length of graph edge e1n . H (T 1) =
(e11, ..., e1n−1) is the sub-trajectory ofT 1 minus the last point. With
LORS, the length of a segment will be added to the overall similarity
instead of a unit cost 1 in LCSS, which is more discriminative when
distinguishing between similar trajectories. Moreover, LORS does
not require a threshold τ , and avoids complex spatial computations
as it does not need to compute the distance between two edges
or vertices which must access additional positional information.
Instead, LORS only needs to determine whether the edge IDs (edgID)
of e1n and e2m are the same. The effectiveness and efficiency of
LORS are explored further in Section 7.4.

Example 2. As shown in Figure 2, a query Q has three points
and two edges e1 and e2, the length of the two edges are 10 and 50,
respectively. There are two trajectories T1 and T2 that intersect with
e1 and e2. T2 has a longer common segment with Q , and should be
more similar to Q , and LORS can preserve this relationship, where

Ŝ(Q,T 1) = |e1 | = 10, and Ŝ(Q,T 2) = |e2 | = 50.
Property 1. LORS is a similarity measure that is non-metric and

robust to noise, and also can handle local time shifting in a collection.

This property can be validated by observing a simple counter-
example in Figure 2, Ŝ(Q,T 1) = 10, if Ŝ(Q,T 2) = 50 and Ŝ(T 1,T 2) =
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0, then |Ŝ(T 1,T 2) − Ŝ(Q,T 1)| = |Ŝ(T 1,T 2) + Ŝ(Q,T 1)| < Ŝ(Q,T 2).
Hence LORS does not obey the triangular inequality, and is non-
metric. The local time shifting property can also be observed from
the matching relationships. LORS is robust to noise as “noisy” edges
cannot contribute to the final similarity score.

It is worth noting that a map-matched trajectory must have at
least one common edge with the query in order for LORS to be non-
zero, so a baseline which finds all possible candidates is to find all
trajectories which share at least one edge with the query. Hence, an
inverted index can be employed to support this search. Storing only
the identifiers for trajectories is not sufficient when supporting the
LORS similarity measure as local time shifting is possible, and the
order of each point in the trajectory must therefore be considered.

5 LIGHTWEIGHT EDGE AND VERTEX INDEX
To support efficient search on LORS and other commonly used
similaritymeasures, we propose a lightweight edge and vertex index
(LEVI). Figure 3(a) describes the two indexes (inverted index and
Grid-index), as well as the storage of vertices, edges and trajectories.

5.1 Inverted Lists on Edges and Vertices
Definition 9. (Edge Inverted Index (EdgII)) The inverted index

Ie of an edge e stores the tuples {traID, order} of all map-matched
segment-trajectories T that overlap with e , where traID is the unique
identifier of T and order is the position of the edge e in T .

In addition to storing traIDs in the inverted index, the order of
edges in a trajectory is also required when computing the similarity
with local time shifting. This is analogous to a Positional Inverted
Index [49] in text retrieval. The main difference is that we do not
need to store the frequency information which is essential for text
retrieval similarity function such as TF·IDF [23]. Moreover, most
trajectories are usually on a trip basis, and will not cross a road
segment several times, and the frequency is rarely greater than
1. So, we use two lists to store the traID and order respectively.
For example in Figure 4,T 15,T 31,T 39 andT 43 cross edge e32 in the
position of 12, 1, 33, 28, respectively, then the positional inverted list
is stored as {{15, 12}, {31, 1}, {39, 33}, {43, 28}} ordered by traID.

For our new similarity function LORS, we will access the inverted
index by edge for the road network, and only the trajectories that
intersect the query edges can be candidates. To further support
other point-based similarity measures, LEVI includes another index
structure, the vertex inverted index (VerII) for each vertex similar
to EdgII, which is denoted as Iv , Figure 3(b) shows the structure of
VerII and EdgII, {1, 1} means that a map-matched vertex-trajectory
ÜT1 crosses vertex v1 in the first position. Additionally, we maintain

15 31

12 1
e32

T31

PFor

VByte

32

0000 0000 0010 0000

32

0010 0000

39 43

33 28

15 16 8 4

12 1 33 28

VByte

Trajectory reordering

4 6 9 13 4 2 3 4PFor
Sorted traID

List

Order List

edgID List21 54 28 21 54 28

Figure 4: Compression and storage of a trajectory in EdgII.

a table (right of Figure 3(c)) to store the latitude and longitude of
each vertexv , and the travel length of each edge e for the similarity
computation, respectively.

5.2 Trajectory and Index Compression
Trajectory Compression. In most existing point-based measures
such as DTW and EDR, each point in the candidate trajectory must
be matched with a query point in the similarity computation, so it
is critical to store the entire trajectory as compactly as possible. A
map-matched trajectory ÜT and T composed of vertices and edges
can be represented by a list of integers which are the IDs of the
vertices and edges, and compressed. In Figure 4, T 31 crosses edges
e32, e21, e54, e28, so T 31 is stored as {32, 21, 54, 28} without sorting
in order to maintain the original ordering. Similar to compressing
the unsorted integer list, we use VByte [8, 24, 34] to compress the
trajectories composed by unsorted identifiers of edges or vertices.
Inverted List Compression.As the inverted index is composed of
posting lists of trajectory identifiers (traID), denoted by integers, the
sorted list of integers can be compressed using efficient and effec-
tive compression techniques such as delta encoding [20]. Moreover,
trajectory ordering information must be maintained and aligned
with its trajectory identifiers. Recall that in the example in Figure 4
the inverted index can be divided into two lists: {12, 1, 33, 28}which
is unsorted; and {15, 31, 39, 43}which is sorted to facilitate compres-
sion with delta encoding {15, 31−15, 39−31, 43−39} = {15, 16, 8, 4}
and VByte 12 = 0000000000001100→ 1100.
Trajectory Reordering. To further compress the inverted lists
by reducing the d-gaps, reassigning traID can also have a signifi-
cant effect. For example in Figure 4, the traID list {15, 31, 39, 43} is
reordered to {4, 6, 9, 13}, then the compression based on delta en-
coding {4, 2, 3, 4} can savemore space than the original {15, 16, 8, 4}.
traID should be assigned such that trajectories sharing many ver-
tices and edges are close to each other. A weighted graph over the
original traID can be constructed such that there is an edge between
two trajectories if they share a verID or edgID. The weight used
is the LORS similarity between the two trajectories. Then, we use
a state-of-the-art graph reordering technique [11] to reorder the
trajectories. For a newly inserted trajectory, we can assign the traID
incrementally and perform the reordering batchwise.

5.3 Vertex Grid-index for Range Querying
For real-distance based functions such as DTW, Hausdorff and
Fréchet distance, any trajectory can be a candidate even when
it does not intersect with the query at all. So, a spatial index such
as an R-tree [14] or Grid-index [43] is required to index all the
vertices in G . An incremental range queries is ran on the vertices of
the query to identify all neighboring vertices, and then the inverted
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index of vertices VerII is accessed to generate the IDs of candidate
trajectories. Similar to existing work [43, 44] on searching trajecto-
ries using pointwise techniques, we use a Grid-index to index the
vertices in the road network, and refer to it as a Vertex Grid-index
(VGI), which is another important component of LEVI. Note that VGI
is also compressible but is a small index in practice as even large
cities such as Beijing have only 54, 406 total vertices. As shown in
Figure 3(c), we build a sorted list for each cell c to store the verIDs
of all the vertices located in c , and assign a unique code for each cell
based on the Z-curve [44], then take delta encoding and compress.

VGI supports two search operators: a range query RS(q, ri ) and
an incremental range search IRS(q, i,д) where д is the cell size,
and i is the current search round. Here, IRS(q, 0,д) returns the cell
where the query is located. Figure 3(c) shows a VGI with a cell size
of д, with two rectangles in the index. IRS(q, 1,д) finds all of the
vertices located outside of the small rectangle where q is located
(IRS(q, 0,д)), also inside the larger rectangle – the annular region
(grey area). Such an operator avoids repetitive scanning of vertices
and accesses the search space by increasing a cell sizeд, Algorithm 1
is then used to compute similarity and do any necessary pruning.

6 PRUNING FOR SIMILARITY SEARCH
Boolean Trajectory Search (BTS) can be easily processed using LEVI.
We first perform a range query in VGI, and access the inverted index
of the edges that intersect with the range, or the vertices that are
located inside the range. For trajectory similarity search (TSS), a
naive algorithm would process every trajectory in the dataset and
return the k best results, requiring an enormous number of I/O and
similarity computations. Hence, effective pruning is essential for
efficient similarity search.
6.1 Algorithm Overview
Similar to dynamic pruning strategies such as MaxScore [37] over
posting lists from the Information Retrieval area, and the Threshold
algorithm [13] from database area, our algorithm is composed of
filtering (Line 2 to 7) and refinement (Line 18 to 23) based on LEVI,
as shown in Algorithm 1.

To filter out non-qualified trajectories, the inverted indexes EdgII:
Ie and VerII: Iv play an important role in every similarity measure
(Line 4 and 7). The main difference is that accessing the inverted
index is conducted once with LORS and multiple times by existing
similarity measures which also use VGI. Termination occurs when
the k ·th result Rk in the result set R has a similarity greater than
the upper bound for the remaining unprocessed trajectories UB
(Line 10). The refinement step is based on bound reordering tech-
niques, such as sorting of all of the candidate trajectoriesT ∈ can by
upper bound similarity Ŝ↑(Q,T ),5 then computing the true similar-
ity through pivoting. Processing stops when the next upper bound
is smaller than the k ·th result (Line 22).

6.2 Pruning for LORS
Recall from Property 1 that LORS is non-metric, for which a tree-
structure index such as an R-tree cannot be used for pruning. To
this end, the main idea of our pruning is to filter the candidates

5In this section the trajectory T and query Q are all map-matched trajectories
by default. We drop T and ÜT to distinguish from raw trajectories for the sake of
convenience. Similarly, Ŝ can be Ŝ or Ü̂S as our algorithm supports both.

Algorithm 1: Trajectory similarity search

Input: {Q,k}: query, D: dataset, I : index, Ŝ : similarity
measure

Output: Top-k result set R
1 can← ∅, R ← ∅, iIRS = 0, UB← 0;
2 for every q ∈ Q do
3 if Ŝ = LORS then
4 can← can ∪ Ie (q);
5 if Ŝ = LCSS or Ŝ = EDR then
6 s ← RS(q,τ );
7 can← can ∪

⋃
q′ ∈s Iv (q

′

);
8 Sort all the trajectories T ∈ can by Ŝ↑(Q,T );
9 if Ŝ is a real distance function then
10 while Ŝ(Q,Rk ) ≥ UB do
11 for every q ∈ Q do
12 s ← IRS(q, iIRS,д);
13 can← can ∪

⋃
q′ ∈s Iv (q

′

);
14 iIRS ← iIRS + 1;
15 Sort the trajectories T ∈ can by Ŝ↑(Q,T );
16 UB← Ŝ↑(Q, iIRS);
17 Choose the top-k and update R;
18 while Ti ∈ can do
19 if Ŝ , LORS then
20 Ti ← AccessFullTrajectory(D,Ti .id);
21 Update(R, Ŝ(Q,Ti ));
22 if Ŝ(Q,Rk ) ≥ Ŝ↑(Q,Ti+1) then
23 break;
24 return R;

without computing the final similarity as the complexity of LORS
is O(mn), wherem and n are the number of segments in Q and T ,
respectively. To avoid computing the real similarity one by one,
we compute an upper bound which has a linear complexity cost,
and check whether it is greater than current top-k results. The
candidate can be skipped if this is true, otherwise we compute the
final similarity. This process is often referred to as early abandoning.
Upper Bounding Similarity. For LORS, after accessing EdgII for
all of the query edges, we know the list of common edges Q ∩T in
the scanned trajectory T . Therefore, the upper similarity bound is
the sum of the travel length |e | of all of these edges e , which can be
easily computed.

Ŝ
↑

LORS(Q,T ) =
∑

e ∈Q∩T
|e | (5)

Bound Reordering. To filter candidates that cannot be the top-k
results, we sort all of the candidates by their upper bounds.With the
sorted list of candidates, we can refine the candidate trajectory list
from the beginning by computing the final similarity, and update
the top-k result heap until the next candidate’s upper bound is
smaller than the k ·th result’s similarity.

In addition to efficient pruning based on LEVI and the upper
bound computations, the real distance computation for LORS can
be done without accessing the trajectory data because the filtering
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procedure has already read the common edges overlapped with the
query and the orderings of the whole trajectory T from LEVI, as it
forms a sub-trajectory Tp of T . This results in the following lemma.

Lemma 1. ∀Tp ∈ can, ŜLORS(Q,Tp ) = ŜLORS(Q,T ).

Proof. This lemma can be easily derived from Equation 4. Any
edge that does not intersect with the query, denoted as T − Tp ,
cannot affect the similarity as the length of an edge will be added
only when two edges overlap. �

Based on this Lemma, we can compute the final distance using a
partial trajectoryTp , and the whole search procedure does not need
to access the trajectory data. This can greatly improve efficiency in
practice and reduce the space of data structures maintaining in the
main memory.

6.3 Pruning with Existing Similarity Measures
A simple baseline to find the top-k trajectories for point-based sim-
ilarity measures is to compute the similarity for every trajectory
in D. For LCSS and EDR, we perform a single range query on a
Grid-index to filter out the unrelated vertices [25]. For real distance
functions such as DTW, Hausdorff and Fréchet distance, no trajec-
tory can be filtered using VerII alone. In order to support dynamic
pruning, we access all of the query vertices to scan new candidates
based on the incremental range query presented in Section 5.3.
Incremental Vertex Scanning. For every query vertex, we access
the nearby cells with vertices to produce a list of new candidate
trajectories from the inverted lists of each vertex, which can in turn
be completed using an incremental range search IRS(q, i,д). The
top-k result heap is updated with the candidates with the highest
upper bounds as they are more likely to be the final results.
Unseen Upper Bound. The computation of the upper bound for
unseen trajectories varies from one similarity measure to another.
After iIRS rounds of incremental range search over VGI for new candi-
date trajectories, the upper bound similarity for unseen trajectories
is computed as:

Ŝ↑(Q, iIRS) =

{
−
∑ |Q |
j=1 qj .r , Ŝ = DTW

−max |Q |j=1 qj .r , Ŝ = Hausdorff , Fréchet
(6)

where qj .r is the scanning radius of point qj , and can be computed
as qj .r = rmin + iIRS × д, and rmin is the vertical distance from qj to
the nearest edge of the cell c where qk locates, as shown in Figure 3.

Lemma 2. ∀T ∈ D − can, Ŝ(Q,T ) < Ŝ↑(Q, iIRS).

Proof. For a trajectoryT that is not scanned by the incremental
range search with a radius r (T ∈ D − can), the distance from every
point in T to the closest point in Q is greater than r . As the real
distance function is pointwise, the overall similarity must be smaller
than the sum of the maximum contributions from the query. �

Example 3. In Figure 5(a), T is an unseen trajectory for Q w.r.t.
three range queries (grey rectangles) – no point of T is inside. Each
point in Q matches the nearest point in T without breaking the order
constraint, and each match with an unseen trajectory such as T will
have a distance greater than the scanning radius. Then, for any tra-
jectory T which has not been scanned yet, we can estimate the upper
bound, Ŝ↑(Q, iIRS) = −(q1.r + q2.r + q3.r ) for DTW.

Q

T
q1.r

q2.r q3.r

Fréchet
Distance

Q

Td1

q2.r

++iIRS
d3

(b) Upper bound of T(a) Upper bound of unseen trajectories

Figure 5: An example of the upper bound computation for simi-
larity measures based on real distance, where DTW is composed of
three two-way arrows while Fréchet distance is a single arrow with
the maximum distance.

Table 1: Statistics of trajectory and road network datasets

Porto T-drive

#trajectories 1,652,742 250,997
#total points 80,635,629 11,757,455
#points per trajectory 49 47
#sampling rate (m) 113 660
average travel length (m) 5,632 31,056
Space (MB) of D 1,853 752

#Edges 150,761 126,827
#Vertices 114,099 54,198
Average edge length (m) 119 217
Space (MB) of G 11 5

The upper bound similarity Ŝ↑(Q,T ) for a single trajectory T
when it is scanned by a large range w.r.t. a query Q is the main
optimization used to reduce computation of the full similarity for ex-
isting similarity measures, which is similar to computing the bound
with linear complexity in Equation 5. For example in Figure 5(b),
whenT is scanned by point q1 and q3, we can compute the distance
d1 andd3, for the pointq2 which has not scannedwithT , its distance
to T will be greater than q2.r , then Ŝ↑(Q,T ) = −(d1 + q2.r + d3).
There are many studies on how to tighten the bound computations
for DTW [30], LCSS [39], EDR [3], Hausdorff [27] and Fréchet dis-
tance [1], and we can employ them for the corresponding measures
in Algorithm 1. Details are omitted due to space limitations.

7 EXPERIMENTS
7.1 Experimental Setup

Datasets. We use the taxi trajectory datasets D of Porto6 and Bei-
jing T-drive [51]. The road network dataset G of each city is ob-
tained from OpenStreetMap.7 Table 1 describes the statistics of the
trajectory datasets and road network dataset. The sampling rate
here means the average distance d between two neighbor points
in a trajectory (sampling a point every d meters.) As compared to
T-drive, Porto has more trajectories, and the sampling rate is higher.
Implementation.We extend the map matching library of Graph-
Hopper8 with the shortest path-based optimization [29] to improve
the efficiency of map-matching. We use FastPFor9 to compress LEVI.
All raw trajectories are mapped to the road network off-line at
index time, and the total mapping time is shown in Table 2. All

6http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
7https://www.openstreetmap.org/
8https://github.com/graphhopper/map-matching
9https://github.com/lemire/JavaFastPFOR
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Table 2: Time spent on map matching, index construction and
compression.

Mapping Index building Compression

Porto LEVI 3,840s 283 s 59s
R-tree – 245s –

T-drive LEVI 542s 214s 40s
R-tree – 66s –

experiments were performed on a server using an Intel Xeon E5
CPU with 256 GB RAM running RHEL v6.3 Linux, implemented
in Java. The index and data were saved to disk after construction,
and were memory-mapped to perform the query processing. Before
conducting the queries we ensure that LEVI is fully loaded in main
memory.
Experimental Goals. The effectiveness and efficiency of Torch
are evaluated in the next three subsections. We verify:
1) Index Performance – whether the compression techniques can
significantly reduce the storage cost.
2) Efficiency of Search – whether LEVI and our pruning algorithm
answers LORS similarity queries efficiently, as well as improve the
performance of existing similarity measures over raw trajectories.
3) Effectiveness of LORS – whether LORS similarity is robust to the
sampling rate, GPS error and point shifting.

7.2 Index Performance
Construction. Table 2 shows the time spent on index construc-
tion over the two datasets, including the time spent on the map-
matching of the whole dataset, building and compressing LEVI. The
“–” in the table means there is no map matching or compression
when using an R-tree to index. Compared with indexing using an
R-tree [14] on the raw trajectory directly, we spend most of the
time on the map-matching. However, this is done off-line, and can
further reduce the time when answering on-line queries.
Compressibility. Table 3 shows four aspects for each dataset: 1)
the space of the raw trajectory dataset D and the R-tree (Raw);
2) the space of the VerII and EdgII, positional list, trajectory data,
location table of edge and vertex on mapped trajectory data (Map),
3) the list compression (ListCom) based on PFor and VByte [20], 4)
the trajectory reordering to compress the inverted lists (Reorder).
The “–” in row “Raw” means that the index or similarity measure
is not supported, and all other “–” mean that the index can not be
compressed (ListCom and Reorder).

Observation 1. For raw trajectories, the R-tree needs to create
MBRs to bound points, requiring a significant amount of additional
space. For example, the R-tree for Porto needs more than 2GB. When
compared against indexing all of the points in trajectories using an
R-tree, our index with the compression on lists and trajectory id re-
ordering can significantly reduce the space. In particular, list com-
pression and reordering can achieve a compression ratio of 15.1% –
764MB → 281MB → 116MB on the Porto dataset. This compres-
sion ratio makes it possible to process search queries over billions of
trajectories. The right side of Table 3 shows the minimal storage to
answer queries using each similarity measure. For example, LORS
depends only on EdgII and the Edge table, and the storage of LORS
is at most 116 + 108 + 5 = 229MB (in bold). When comparing the
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Figure 6: TSS with LEVI using different measures on Porto.
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Figure 7: TSS with LEVI using different measures on T-drive.
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Figure 8: LORS with LEVI and Compressed LEVI on Porto.

two datasets, we observe that the compression is better in the larger
Porto dataset. For T-drive, map-matching needs to add more points
to achieve competitive precision when compared with the raw trajec-
tories. Overall, LORS achieves the most efficient search with the least
footprint, needing only 0.2GB for Porto, while all other models require
at least 0.5GB.

7.3 Efficiency Evaluation
Comparison. Similarity search TSS and Boolean search BTS are
both evaluated in this section. For TSS, we compare LORSwith LCSS,
and EDR/ DTW over the mapped and raw trajectories using the
same query set. The Hausdorff and Fréchet distance are not shown
here as they are much slower than the other four tested measures.
To simulate the real queries, we generate a query pool of 1, 000
trajectories with a length |Q | of 90 (the average length of trajectories
in D) by randomly choosing from D, and choosing the |Q | front
edges incrementally in order to test the effect of parameter |Q |. For
each query, we run it 5 times and report the average running time.
Similarity Search. To observe the effect of k and number of edges
|Q |, we increasek = 1, 5, 20, 35, 50, |Q | = 10, 30, 50, 70, 90 to observe
the performance by executing the queries in the query pool, where
the underlined number is the default value.

Observation 2. From Figure 6, we observe that LORS is always
the most efficient when k and |Q | are increased.

Next, we explore the search time compared with state-of-the-art
using raw trajectories, and the results on Porto are in shown in
Figures 8,10,11,12. In each Figure, each column compares the in-
dexes answering the same similarity measure, and it is composed
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Table 3: Space occupation (MB) of index, trajectory and the minimum space to answer each of the six similarity measures. For VerII and
EdgII, the left column shows the space of vertex id list, and the right column shows the space of the positional list. A breakdown of the index
size under each similarity measure is as follows. LORS:{1, 6}; LCSS and EDR:{2, 3, 4, 5}; DTW, Hausdorff (Haus) and Fréchet: {2, 3, 5, 7} for
raw data based on R-tree; the mapped data based on Grid-index is VGI {2, 3, 4, 5}.

EdgII1 VerII2 VGI3 D4 Vertex5 Edge6 R-tree7 LORS LCSS EDR DTW Haus Fréchet

Porto

Raw – – – – 3,178 1,853 – –

2,982

– 5,031 5,031 4,843 4,843 4,843
Map 764 307 736 296 14 1,130 6 5 1,076 2,182 2,182 4,020 4,020 4,020
ListCom 281 108 299 104 6 301 – – 394 716 716 3,691 3,691 3,691
Reorder 116 – 132 – – – – – 229 549 549 3,524 3,524 3,524

T-drive

Raw – – – – 741 752 – – – 1,493 1,493 1,162 1,162 1162
Map 373 208 374 209 6 629 3 3 584 1,221 1,221 1,625 1,625 1,625
ListCom 178 91 164 91 2 155 – – 410 272 415 415 823 823 823
Reorder 146 – 131 – – – – – 237 382 382 790 790 790
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Figure 9: LORS with LEVI and Compressed LEVI on T-drive.
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Figure 10: LCSS with Grid-index, LEVI, Compressed LEVI.
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Figure 11: EDR with Grid-index, LEVI, Compressed LEVI.
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Figure 12: DTW with R-tree and LEVI.

of the time for filtering and refinement. For example, Figure 8 com-
pares the search efficiency of LORS based on LEVI and compressed
LEVI. Table 4 shows a further breakdown of the run time to the
mapping, filtering, refinement, as well as the number of candidates
after filtering, and refined candidates on the Porto dataset.

Observation 3. First, LORS supports the search in the most effi-
cient manner, followed by EDR and LCSS. Second DTW is improved the

Table 4: Running time (s) and candidates break down of similarity
search when k = 20, |Q | = 50, where “#can” means the number of
candidates after filtering, “#refine” means the number of trajectories
whose real distances are computed.

Map Filter Refine #can #refine

Porto

LORS

0.002

0.378 0.469 228,848 44,641
LCSS 1.187 0.171 286,218 13,935
EDR 1.185 0.151 286,218 13,257
DTW 5.512 1.475 288,820 134,236
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Figure 13: BTS: range query (left) and path query (right).

most by LEVI (up to 3 times). Third, the search over compressed data
will degrade the efficiency by 10% to 20%, because of decompressing
the compressed posting list to access the list of vertex ids. Last, from
Table 4, it can be observed that filtering occupies the largest portion
of run time in LORS.

Boolean Search. Given a rectangular region, a range query (RQ)
searches all the trajectories that cross this region. We randomly
generate 1,000 points in the space of each city, and further pro-
duce the rectangles centered at the point with a side length of
r = 100m, 200m, 300m, 400m, 500m. Then we increase the size of
rectangle to observe the performance. Based on the query pool
with 1, 000 trajectories used in the similarity search, we increase
the number of query edges on the former query to observe the
performance of path query (PQ) and strict path query (SPQ), i.e.,
|Q | = 10, 30, 50, 70, 90.

Observation 4. We compare our performance with range queries
over an R-tree of raw trajectories. In Figure 13, a range query with
LEVI is more efficient than with an R-tree [16] or a Grid-index [25],
with up to a ten fold improvement. A path query (PQ) is more efficient
than a strict path query (SPQ), as an SPQ imposes ordering constraints.
PQ and SPQ with as many as 90 edges can still be answered within 1
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Table 5: The robustness evaluation to sampling rate, GPS error and point shifting.

Sampling Rate GPS Error Point Shifting

LORS LCSS EDR DTW Fréchet Haus LORS LCSS EDR LORS LCSS EDR

Porto

P@5 0.959 0.825 0.872 0.887 0.857 0.841 0.987 0.600 0.587 0.969 0.793 0.843
P@10 0.941 0.793 0.839 0.840 0.830 0.809 0.969 0.550 0.529 0.964 0.791 0.840
P@15 0.921 0.778 0.819 0.813 0.815 0.788 0.946 0.532 0.506 0.959 0.790 0.831

NDCG@5 0.966 0.846 0.888 0.902 0.869 0.858 0.991 0.641 0.630 0.972 0.805 0.851
NDCG@10 0.952 0.819 0.861 0.868 0.849 0.832 0.979 0.595 0.579 0.968 0.801 0.847
NDCG@15 0.938 0.804 0.845 0.846 0.836 0.815 0.962 0.575 0.555 0.964 0.794 0.839

T-drive

P@5 0.982 0.895 0.816 0.981 0.950 0.909 0.999 0.880 0.760 0.958 0.881 0.801
P@10 0.974 0.916 0.824 0.969 0.958 0.916 0.988 0.868 0.720 0.953 0.914 0.829
P@15 0.964 0.912 0.831 0.933 0.962 0.922 0.976 0.836 0.681 0.952 0.927 0.857

NDCG@5 0.984 0.882 0.823 0.981 0.948 0.907 0.998 0.877 0.775 0.960 0.864 0.807
NDCG@10 0.978 0.900 0.825 0.974 0.954 0.912 0.990 0.871 0.745 0.956 0.891 0.822
NDCG@15 0.972 0.901 0.829 0.951 0.958 0.916 0.982 0.851 0.716 0.955 0.904 0.841

second, which should fulfill the goal of near real-time traffic moni-
toring. PQ and SPQ with compression can be slower, but still 5 times
faster than an R-tree based range query.

7.4 Effectiveness Evaluation
To the best of our knowledge, no ground truth relevance labels
exist for trajectory search over road networks, which could be used
to evaluate the robustness of different similarity measures. Torch
employs a relevance judgment method where the ground truth
is generated by creating trajectories on a given path in the road
network, and checking whether they can be still retrieved as a top-k
result. Such a path-based ground truth generation is also widely
used in map matching [26].
Ground Truth Simulation. We randomly choose 2, 000 trajec-
tories from each dataset, and map them to the path in the road
network. For each path, we generate k trajectories from this path
using a GPS simulator [48], and inject them into the raw trajectory
dataset D. To simulate the GPS sampling of a path, we mainly con-
sider three features: sampling rate, GPS error, and point shifting.
In particular, we maintain three ground truth sets by changing the
sampling rate, injecting GPS error and conducting point shifting.

For the sampling rate, we take each query trajectory as the base,
and add 1, 2, . . . ,k points into the edge between two adjacent
vertices to generate k trajectories successively. For the GPS error,
we re-sample each point and move it by a distance of 2m to 7.8m as
the GPS has a global average user range error (URE) of ≤ 7.8m.10 For
point shifting, we shift all of the points of the raw query trajectory
along the road segments by 1m, 2m, . . . , k2 in two directions. For
all the search results of a query, we judge them with three grades:
1) 2 for those trajectories in the generated ground truth of query.
2) 1 for those trajectories which are not in the ground truth but
overlap with the query. 3) 0 for all remaining trajectories in D. To
guarantee that all of the trajectories in D are labeled with only one
of the three grades, we remove all of the trajectories that overlap
with the queries before injecting the ground truth set.
Comparison.We compare LORSwith the other five similarity mea-
sures including DTW, LCSS, EDR, Hausdorff and Fréchet distance

10https://www.gps.gov/systems/gps/performance/accuracy/

over the raw trajectories, as all the state-art-of methods on tra-
jectory similarity search previously used raw trajectories [38, 47].
The comparison is extensively conducted by changing k = 5, 10, 15
using three simulated ground-truth sets. We employ two common
metrics to measure the precision, they are top-k result precision
(P@k) and normalized discounted cumulative gain (NDCG@k) [15].

Observation 5. We compare all six similarity measures by sam-
pling rate, GPS error and point shifting, as shown in Table 5. We
observe that LORS consistently has the highest search precision. The
main reason for non-relevant results is that the raw trajectory is not
mapped to the original route, and may lead to mismatches with the
query. As k increases, the precision of all measures degrades as the
results contain more trajectories which are not in the ground truth
set. For GPS errors and point shifting, we choose the two most effi-
cient measures LCSS and EDR to compare due to space limitations. We
observe that LORS is robust to GPS errors and point shifting, while
LCSS and EDR have low precision as they used a threshold to match
points, and the two original matching points are not matched as the
GPS error and point shifting divide them. Interestingly, T-drive has
a higher precision than Porto for each similarity measure, especially
DTW. This is because T-drive has fewer trajectories, and the ground
truth queries injected are therefore easier to identify in the top-k re-
sults. However, DTW spends more than 5 times longer than LORS to
complete the search. To summarize, among all six measures, LORS is
the most robust to sampling rate, GPS error and point shifting.

7.5 Further Discussion
By conducting extensive experiments on the efficiency and effec-
tiveness of Torch, we show that LORS, driven by LEVI, has the best
performance among existing similarity models. By aggregating the
above observations, we find that: 1) LORS effectively solves the
problem of sensitivity to sampling rate, and it is also robust to GPS
error and point shifting. 2) LEVI improves the efficiency of exist-
ing similarity measures, sometimes significantly. 3) Data is more
easily reduced using common compression techniques from the IR
domain, and the index is adaptive. We only need to load a subset of
index components into main memory to answer a query.
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8 CONCLUSIONS
This paper proposes a trajectory search engine called Torch to effi-
ciently answer two common types queries (Boolean search and top-
k similarity search) over trajectories on road networks. In Torch, the
three-level design and applications of inverted index, compression
and effectiveness evaluation from information retrieval simplify
the trajectory storage and retrieval, enable a new similarity model
called LORS based on road segments, and accelerate the search
based on the highly compressible LEVI. In the future, we would like
to further enrich the supported queries, such as the time-sensitive
queries, and implement advanced analytic operators including tra-
jectory clustering and prediction on top of Torch.
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