
Trip Planning by an Integrated Search Paradigm
Sheng Wang, Mingzhao Li, Yipeng Zhang,

Zhifeng Bao, David Alexander Tedjopurnomo
School of Science, RMIT University
firstname.surname@rmit.edu.au

Xiaolin Qin
College of Computer Science and Technology,

Nanjing University of Aeronautics and Astronautics
qinxcs@nuaa.edu.cn

ABSTRACT
In this paper, we demonstrate a trip planning system called TISP,
which enables users’ interactive exploration of POIs and trajecto-
ries in their incremental trip planning. At the back end, TISP is
able to support seven types of common queries over spatial-only,
spatial-textual and textual-only data, based on our proposed unified
indexing and search paradigm [7]. At the front end, we propose
novel visualization designs to present the result of different types
of queries; our user-friendly interaction designs allow users to
construct further queries without inputting any text.
ACM Reference Format:
Sheng Wang, Mingzhao Li, Yipeng Zhang, Zhifeng Bao, David Alexander
Tedjopurnomo and Xiaolin Qin. 2018. Trip Planning by an Integrated Search
Paradigm. In Proceedings of 2018 International Conference on Management of
Data (SIGMOD’18). ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3183713.3193543

1 INTRODUCTION
In this paper, we would like to demonstrate a system that we have
developed, TISP — a Trip planning system by an Integrated Search
Paradigm. TISP helps users (even those without any prior knowl-
edge of the target city) interactively discover a city and incremen-
tally plan a unique trip. A preliminary version of the system1 and
a demonstration video2 are available for public access.

Planning a trip usually involves a series of search processes,
where users may issue several queries of the same type (with dif-
ferent settings), or even different types of queries, until the desired
points of interest (POIs) and trajectories are found. In particular, for
POI search, it involves the keyword query [4], k-Nearest Neighbor
(kNN) query [5], Top-k Spatial Keyword (TkSK) query [9], Aggre-
gate Nearest Neighbour (ANN) query [3], and Aggregate Textual
Nearest Neighbour (ATNN) query [8]. For trajectory search, it
involves the k-Best-Connected-Trajectory (kBCT) query [2] and
Top-k Spatial-Textual Trajectory (TkSTT) query [6]. Detailed sce-
narios demonstrating the query usage are elaborated in Section 3.

Our prior study [7] has shown that standalone index or process-
ing method for each type of query is expensive in both storage
and computation cost, thus failing to provide interactive search.
1https://sites.google.com/site/shengwangcs/tisp
2https://youtu.be/5vB22ZR8kvk

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3193543

Therefore, we first proposed a general Top-k query calledMonotone
Aggregate Spatial Keyword query - MASK, which can cover all the
above queries. Then we proposed a unified index and query pro-
cessing paradigm to answer various types of location-based queries
on both spatial point data and spatial trajectory data. This results
in the first feature of TISP.

The second feature of TISP is an interactive data exploration.
In particular, we design an interactive visualization procedure to
help users explore various data objects and plan their trips. On
one hand, we propose a series of novel visual encoding designs
to visualize the result of different types of queries. E.g., we design
an enhanced transfer graph with careful retinal channel mapping
of vertices and edges (Figure 2) to visualize popular attractions
and attraction pairs. On the other hand, we design user-friendly
interactions upon multiple visualization views, which heuristically
guide users to interact with different visualization results, construct
further queries without inputting any text, and gradually complete
their planned trip (Section 4).

Since there is no system from academia serving similar purposes
to TISP, we particularly compare TISP with commercial trip plan-
ning platforms. After trying to plan trips using several popular com-
mercial trip planning platforms, we have two main observations. (1)
Some systems like TripAdvisor3 only allow users to search for POIs
(e.g., attractions, restaurants, hotels) rather than trips. Moreover,
TripAdvisor only supports searching hotels in a region or near a
single attraction, but users cannot search hotels close to multiple at-
tractions in their planned trip. (2) Some systems (such as TripHobo4
and Google Trips5) maintain a number of popular journeys for each
city, and allow users to search by the city name and duration of
travel, then existing trips that meet the requirements are presented
to users; however, they do not support searching by specified pref-
erences, such as attractions that are covered by any single previous
journey, or activities that users want to do around the attractions.
Hence, TripHobo and Google Trips can only support trip search
partially. More details about the supported functions of these three
platforms are presented in Table 1.

Object Ranker

Planned Trip

Ei�el Tower

Louvre Museum
... Hotel

KnowledgeGeneration

UserInteraction

User Interacting
with the Front EndBack End

Query Recognition

Search Engine

Uni�ed Index

Visualization

Figure 1: System architecture of TISP.
3https://www.tripadvisor.com/
4https://www.triphobo.com/
5https://www.google.com/trips/

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1673

https://doi.org/10.1145/3183713.3193543
https://doi.org/10.1145/3183713.3193543
https://sites.google.com/site/shengwangcs/tisp
https://youtu.be/5vB22ZR8kvk
https://doi.org/10.1145/3183713.3193543
https://www.tripadvisor.com/
https://www.triphobo.com/
https://www.google.com/trips/

2 SYSTEM ARCHITECTURE
As shown in Figure 1, TISP includes a front end of visual interface
and a back end of query processing. At the front end, TISP presents
information to users in a visually effective way (Figure 4). Each new
user interaction over the interface will be recognised as a specific
query type at the back end (see Figure 3 for classification of queries),
and a search engine is employed to answer the query on top of a
unified index. With the query result returned by the Object Ranker,
different views of the visualization results at the front end will be
partially refreshed to provide new information, which allows users
to acquire new knowledge in completing their trips.

3 BACK-END TECHNIQUES
Here we describe how our unified indexing and query processing
paradigm facilitate answering various queries, and data structures
for visual explorations. Please refer to our work [7] for details.

3.1 Preliminaries

Data Model. We maintain two kinds of data objects in our system.
One is the points of interest (POIs), which include attractions, hotels
and restaurants. Each POI p = (ρ,ψ) is a pair consisting of the
location ρ and a set of associated terms ψ = (t1, t2, . . . , ti) which
describes ρ and/or users’ activities at ρ. The other one is a trip T
which is a set (or sequence) of attractions, i.e., T = {p1,p2, · · · ,pl }.

Transfer Graph. A transfer graph G = (V ,E) is composed of an
attraction vertex setV and an edge set E. Each edge e ∈ E connects
two attraction verticesv1,v2 ∈ V , and it is attached with the weight
to indicate the popularity of the edge. The weight is computed
based on the number of historical trips that cross v1 and v2. Each
attraction vertex v is also attached with a weight indicating how
many trips cover the vertex.

1. Trocadéro
2. Metro
3. Take photos

1. National Museum
2. Asian art
3. Exhibitions

1. Eiffel Tower
2. Seine
3. Le Jules Verne

1. Les Invalides
2. Military
3. Napoleon

1. Grand Palais
2. Café
3. Museum

Trip
Attraction
Vertex

Preference

3

2

2

2

1

1

2

1

1

Figure 2: The transfer graph composed by vertices and edges.
Example 3.1. Figure 2 shows a graph built from the historical

trips. There are 6 vertices, each one is attached with a preference
list. A user can click the vertex to check the associated activities.
The linked vertices are highlighted if these two attractions are
frequently visited by a majority of tourists.

3.2 An Integrated Search Paradigm
We describe the explorations using three common scenarios in trip
planning, i.e., exploring attractions, restaurants and hotels. Table 1
shows the main query types in each scenario. Note that, more
query types [1] can be supported in TISP incrementally, while this
paper focuses on seven most common types of query which can be
answered efficiently by our integrated search paradigm.

Table 1: An overview of queries, their matching scenarios
(S1, S2, S3) and supported systems: TH (TripHobo), TA (Tri-
pAdvisor), GT (Google Trips), ★: partially supported. (KS:
Keyword Search, kBCT: k Best Connect Trajectories, TkSTT:
Top-k Spatial Textual Trajectory, kNN: k Nearest Neigh-
bor, TkSK: Top-k Spatial Keyword, ANN: Aggregate Nearest
Neighbor, ATNN: Aggregate Textual Nearest Neighbor.)

Exemplar Demand Query Type Input Output TH TA GT
Cultural Attractions KS [4] Keywords POIs ✓ ✓ ★

S1 Top-k Trips kBCT [2] Locations Trips ★ ✗ ★

Top-k Activity Trips TkSTT [6] Locations,
keywords Trips ✗ ✗ ✗

S2
k Nearest Restaurants kNN [5] Location POIs ✓ ✓ ✓

k French Restaurants TkSK [9] Location,
keywords POIs ✗ ✓ ✓

S3
k Nearest Hotels to
My Trip Attractions ANN [3] Locations POIs ✗ ✗ ✗

k Nearest Hotels
with Pool to

My Trip Attractions
ATNN [8] Locations,

keywords POIs ✗ ✗ ✗

Query& SimilarityModel.According to the user input in Table 1,
we deduce an appropriate type of query to be triggered. Specifically,
a query Q is in form of {Qs ,Qt }, where Qs = {ρ1, ρ2, · · · , ρm } is
the query location set, and Qt =

⋃m
i=1ψi is the query keyword set,

i.e., m = |Qs | and n = |Qt |. To judge whether a POI or a trip is
related to the user query, without loss of generality, we employ a
monotone aggregate similarity function [7] as below:

Ŝ (Q,o) = α ·
∑
ρ ∈Qs

SPr (ρ,o.ρ) + (1 − α) ·
∑
ψ ∈Qt

TRe(ψ ,o.ψ) (1)

where SPr (ρ,o.ρ) is the spatial proximity between o.ρ and ρ,
TRe(ψ ,o.ψ) is the textual relevance between ψ and o.ψ , and α ∈
[0, 1] is a query preference parameter that balances the spatial prox-
imity and textual relevance. Figure 3 shows the query recognition
process according to the key parameters in the query and the data
model.

Figure 3: Query recognition according to user input (l ,m,n),
and the relationships between the queries and scenarios.

Unified Index. The index is composed by a grid indexIG , a textual
inverted list IT , and a point list IP .
1) IT sorts the keyword list in a descending order of term weight,
and divides the list into blocks of fixed size. TextualIterator (qi ,IT)
is defined as an operator to scan the list.
2) InIG , the whole space is divided into grids of equal size, and each
leaf cell is assigned with a unique id using the z-curve cross-coding
[9]. SpatialIterator (qi ,IG) is defined to access nearby points from
near to distant.
3) A trip is a set (or sequence) of points, and the proposed query
processing method is built at point granularity. Therefore, we create
an inverted index IP to store a mapping from an attraction POI to
its corresponding trips. Based on CoveredObjects (R (qi),IP), the
trips that a point belongs to will be returned efficiently.

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1674

Algorithm 1: Search(D,Q,k)
Output: Top-k result set R

1 R ← ∅; Dc ← ∅; // Result, Scanned object set

2 while |Dc | < |D | do
3 foreach qi ∈ Q do
4 R (qi) ← TextualIterator (qi ,IT);
5 R (qi) ← R (qi) ∪ SpatialIterator (qi ,IG);

6 Dc ← Dc ∪
|Q |⋃
i=1

CoveredObjects (R (qi),IP);

7 if |Dc | > k then
8 if Ŝ↓ (Q,R) > Ŝ↑(D − Dc) then
9 R ← RefineCandidate(Dc);

10 return R;

Search Engine. The main idea is to conduct filtering to get all
the candidates first, followed by a refinement on them to get the
final top-k results. With IG and IT , we keep scanning for new
points which are related to the query keywords and are close to
the locations mentioned in the query. Then, we find the related
trips based on IT . Based on the similarity model, we compute the
upper bound similarity Ŝ↑(D−Dc) for all unseen trips or POIs, then
compare it with the top-k results’ lower bound similarity Ŝ↓ (Q,R),
which is a common filter-refine framework employed by almost all
existing studies [2, 6, 9]. If the unseen upper bound is smaller than
the current lower bound, we can terminate the whole search process
and return the top-k results. A complete solution is presented in
Algorithm 1. More technical details on bound computations can be
found in our previous work [6, 7].

4 DEMONSTRATION SCENARIOS
We will demonstrate TISP based on real-world datasets and sce-
narios. We crawled POIs (restaurants and hotels) from TripAdvisor
Paris6, and acquired 3, 249 trips from TripHobo Paris7, which cover
197 attractions. A large-scale data collection and integration for
more other cities are available at onsite demonstration.

4.1 An Overview of User Interface
TISP is initialized with a transfer graph on top of the map to present
an overview of popular tourist attractions in the target city. As
shown in Figure 4(b), each circle represents an attraction, where the
size and color of the circle represent the popularity and type of the
attraction, respectively. A pair of attractions (i.e. other attractions B
that travellers also visit together with attraction A) are linked with
edges, with the width of each edge illustrating the popularity of
the attraction pair. Users can also select preferred attraction types
(e.g. “cultural”) from the selection panel (Figure 4(a)). Next we will
describe four scenarios when Grace uses TISP to plan a trip.

4.2 Scenario 1: Exploring Attractions
Grace can click on an attraction in the transfer graph, and a detailed
view (Figure 4(c)) will appear with a word cloud describing the
popular activities at the selected attraction. The clicked activity in
6https://www.tripadvisor.com/Tourism-g187147-Paris_Ile_de_France-Vacations.
html
7https://www.triphobo.com/tripplans/paris

the word cloud will be added to her favourite activity list. Grace
can also filter attractions by the attraction filter: a keyword search
(KS) will be conducted at the back end, and the transfer graph will
be refreshed based on the results after filtering.

Clicking an attraction in the transfer graph will also trigger
the pair pattern view (Figure 4(d)), which visualizes what other
attractions that travellers often visit together with the selected
attraction. In this view, the selected attraction is placed in the center,
and other attractions are placed in a clockwise fashion based on
the popularity of the attraction pair. Grace can iteratively double
click to select another attraction and add it to the centre of the view.
The pair pattern view will be updated, showing the attractions that
travellers normally visit together with the two currently selected
attractions. Aswe can see from Figure 4(d), among all the attractions,
“River Seine" is the most popular attraction that travellers often visit
together with “Eiffel Tower".

However, the pair pattern view is not enough to discover all
related attractions as it only shows the neighbor vertices of current
attraction. Alternatively, Grace can search for previous travellers’
trips by the attractions and activities in her own favourite list. The
kBCT [2] and TkSTT query [6] will be conducted and a list of
trips will be shown in the trip list view (Figure 4(e)). Each line is a
different trip ranked by the query result, and each trip is visualized
with linked attractions: the length and the width of the edge are
defined by the travel time between two adjacent attractions, and
the popularity of the attraction pairs, respectively; the opacity of
the vertex is determined by whether the attraction is in Grace’s list.

4.3 Scenario 2: Exploring Facilities Nearby
In the detailed view of an attraction (Figure 4(c)), Grace can also click
on the “Nearby restaurants" button; then a kNN search [5] over the
restaurant dataset will be conducted at the back end. Afterwards,
nearby restaurants will be shown on top of the map. Meanwhile, a
word cloud is generated to describe popular features (e.g. “French
cuisine", “gluten free") of the nearby restaurants. Grace can choose
the features by directly clicking on the individual feature in the
word cloud. Next, an advanced query TkSK [9] will be generated
to find the restaurants which contain the chosen features.

4.4 Scenario 3: Exploring Hotels
After Grace has added some attractions/restaurants into her favorite
list, she might consider finding a hotel that is convenient for her
to visit most of the attractions. Grace can click on the “Find hotels"
button, an aggregate nearest neighbor (ANN) [3] query will be
conducted to find those hotels with theminimum aggregate distance
to all selected attractions (Figure 6). At the front end, a list of hotels
will be shown on top of the map. Meanwhile, a word cloud will
be generated based on popular keywords related to hotels (e.g.
“kitchen”, “pool”). If Grace selects some keywords, she will trigger
an aggregate textual nearest neighbor (ATNN) [8] query. Since
price is an important factor for users to choose an ideal hotel, TISP
also provides a slider (Figure 4(a)) for users to define the price range.

4.5 Scenario 4: Optimal Travel Route
Once Grace has gathered a series of discrete attractions and activi-
ties, restaurants, and hotels related to each attraction, the last step is

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1675

https://www.tripadvisor.com/Tourism-g187147-Paris_Ile_de_France-Vacations.html
https://www.tripadvisor.com/Tourism-g187147-Paris_Ile_de_France-Vacations.html
https://www.triphobo.com/tripplans/paris

Figure 4: An overview of the main user interface of TISP: (a) the selection panel, which allows users to filter attractions and
manage their favorite list; (b) the map view with an enhanced transfer graph; (c) the detailed view initialized when the user
click on an attraction; (d) the pair pattern view to display popular attraction pairs of a selected attraction; (e) the trip list view.

Figure 5: Scenario 2: Searching the 5
nearest restaurants to the Eiffel Tower.

Figure 6: Scenario 3: Searching the top
five hotels near to the planned trip.

Figure 7: Scenario 4: Optimal route that
connects the selected attractions and hotel.

to connect them and recommend the optimal routes, which aims to
achieve the minimum travel time or distance, which is similar to the
travelling salesman problem. Grace can select it as a final planned
trip from the suggested options, or modify it by dragging the line.
As shown in Figure 7, TISP suggests a route of the shortest path on
the road network based on the Google Map API. The route covers
all her favored attractions. Moreover, connecting all the searched
POIs as an optimal trip can be a novel optimizing problem rather
than a shortest path search, such as minimizing the trip duration
(days) or the budget which is also supported.

ACKNOWLEDGMENTS
This work was partially supported by ARC DP170102726,
DP180102050, and National Natural Science Foundation of China
(NSFC) 61728204, 91646204. Zhifeng Bao is supported by a Google
Faculty Award.

REFERENCES
[1] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query processing: an

experimental evaluation. PVLDB, 6(3):217–228, 2013.
[2] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie. Searching trajectories by

locations-an efficiency study. In SIGMOD, pages 255–266, 2010.
[3] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui. Aggregate nearest neighbor

queries in spatial databases. ACM Transactions on Database Systems, 30(2):529–576,
2005.

[4] L. Qin, J. X. Yu, and L. Chang. Keyword Search in Databases: The Power of RDBMS.
In SIGMOD, pages 681–693, 2009.

[5] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: a dynamic index for
multi-dimensional objects. In VLDB, pages 507–518, 1987.

[6] S. Wang, Z. Bao, J. S. Culpepper, T. Sellis, M. Sanderson, and X. Qin. Answering
top-k exemplar trajectory queries. In ICDE, pages 597–608, 2017.

[7] S. Wang, Z. Bao, S. Huang, and R. Zhang. A unified processing paradigm for
interactive location-based web search. InWSDM, pages 601–609, 2018.

[8] K. Yao, J. Li, G. Li, and C. Luo. Efficient group top-k spatial keyword query
processing. In APWeb, pages 153–165, 2016.

[9] D. Zhang, C.-Y. Chan, and K.-L. Tan. Processing spatial keyword query as a top-k
aggregation query. In SIGIR, pages 355–364, 2014.

Demonstrations SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1676

	Abstract
	1 Introduction
	2 System Architecture
	3 Back-end Techniques
	3.1 Preliminaries
	3.2 An Integrated Search Paradigm

	4 Demonstration Scenarios
	4.1 An Overview of User Interface
	4.2 Scenario 1: Exploring Attractions
	4.3 Scenario 2: Exploring Facilities Nearby
	4.4 Scenario 3: Exploring Hotels
	4.5 Scenario 4: Optimal Travel Route

	Acknowledgments
	References

