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Abstract—GPS enables mobile devices to continuously provide new opportunities to improve our daily lives. For example, the data

collected in applications created by Uber or Public Transport Authorities can be used to plan transportation routes, estimate capacities,

and proactively identify low coverage areas. In this paper, we study a new kind of query—Reverse k Nearest Neighbor Search over

Trajectories (RkNNT), which can be used for route planning and capacity estimation. Given a set of existing routes DR, a set of

passenger transitionsDT , and a query routeQ, an RkNNT query returns all transitions that take Q as one of its k nearest travel routes.

To solve the problem, we first develop an index to handle dynamic trajectory updates, so that the most up-to-date transition data are

available for answering an RkNNT query. Then we introduce a filter refinement framework for processing RkNNT queries using the

proposed indexes. Next, we show how to use RkNNT to solve the optimal route planning problemMaxRkNNT (MinRkNNT), which is

to search for the optimal route from a start location to an end location that could attract the maximum (or minimum) number of

passengers based on a predefined travel distance threshold. Experiments on real datasets demonstrate the efficiency and scalability of

our approaches. To the best of our knowledge, this is the first work to study the RkNNT problem for route planning.

Index Terms—Trajectory database, route planning, transit network, capacity prediction

Ç

1 INTRODUCTION

IN the last decade, Reverse k Nearest Neighbor (RkNN)
queries on spatial point data have attracted considerable

attention from researchers [5], [7], [23], [24], [29], [31]. An
RkNN query aims to identify all (spatial) objects that have a
query location as a k nearest neighbor. The RkNN query
has a wide variety of applications such as resource alloca-
tion, decision support, and profile-based marketing. For
example, RkNN queries can be used to estimate the number
of customers for planned restaurants among existing restau-
rants, which is called a bichromatic RkNN [31].

In addition to point-wise geospatial data, trajectory data
describing user movements, such as GPS trajectories of taxis
[34] or Uber drivers1, check-in trajectories [20], [27] of social
media users in Foursquare can also provide useful spatial
trend data. Recently, such data collected from GPS devices
has been used in intelligent transportation applications such
as data-driven passenger flow prediction of bus routes [1], [9], [13],
[15], [26], [33]. The main idea is to find origin-destination data

whichwill help identify a specified route in a large transporta-
tion network for commuters. This is essentially a reverse k
nearest neighbour search, but the object is a trajectory instead
of a single point [24].

In this paper, we will explore RkNN search over
multiple-point trajectories (referred to as RkNNT). In
a nutshell, an RkNNT query can be described as: taking
a planned (or existing) route as a query Q, return all the
passengers who will take the query route Q as one of the k
nearest routes among the route set DR. Here, a passenger’s
movement is modeled as a combination of an origin and a
destination [13] such as home and office, which is called a
transition. Fig. 1 presents an example, where there are six tran-
sitions, each with an origin and destination, which could be
collected from social media applications and “Ride Sharing”
applications, and four routes in a transportation network.

The main difference between our problem RkNNT and
RkNN is that our query is a route, and our data collections
contain both routes and user transitions. RkNNT can be
used to estimate the passengers that will take the query
route to travel. Another significant difference between
RkNNT and RkNN is that the transition data is dynamic,
and new transitions can arrive continuously, such as
requests from Ride-Sharing passengers. Therefore, it is
important to take this into consideration in designing a solu-
tion when answering an RkNNT query.

RkNNT queries can serve as a fundamental operation in
many applications in the transportation field. The most
common one is to estimate the capacity of a route based on
passenger movements, as described above. Furthermore, an
RkNNT query could be used for Optimal Route Planning as
described below.

An RkNNT query can be used to find the optimal route
which has the maximum (minimum) number of passengers
among a set of candidate routes. We refer to this problem
as MaxRkNNT (MinRkNNT). For Ride-Sharing drivers,

1. https://movement.uber.com
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finding a route with the maximum number of passengers
can increase profitability (the driver fare will be increased
with a surge of passenger requests) and the chance of being
hired. For ambulance and fire truck drivers, finding a route
which has the fewest people around can reduce response
time in emergency situations. Furthermore, by taking the
temporal factor into consideration (user transitions at differ-
ent time periods), it can help further estimate the passengers
of a bus or car with specific starting and closing hours, in
order to save running cost for either individual vehicle driv-
ers or public transportation authority [6].

The main challenge in answering RkNNT queries lies in
how to prune the transitions which cannot be in the results
without explicitly accessing every user transition. A straight-
forward method is to perform a kNN search for every transi-
tion, which is analogous to the trajectory similarity join problem
[19], and then check the resulting ranked lists to see whether
the query is a kNN. However, thismethod is intractablewhen
there are a large number of transitions and new transitions
are being added to the database.

To overcome the above challenge, we first build two
R-tree indexes, the RR-tree and TR-tree, which are com-
bined with two inverted indexes, PList and NList, for the
route and transition sets, respectively. Then, we choose a set
of route points from the existing routes to form a filtering set
by traversing the RR-tree. By drawing bisectors between
the route points in the filtering set and the query, an area
can be found where any transition point inside cannot have
the query as a nearest neighbor. After finding the filtering
set, we traverse the TR-tree to prune transitions and check
if a node can be filtered by more than k routes in the filtering
set. Finally, all the candidate transitions are verified using
the filtered nodes during the traversal of the RR-tree.

Next, we explore the optimal route planning problem-
MaxRkNNT (MinRkNNT), where we consider a graph
formed by a bus network. Given a starting location and a des-
tination, we find the optimal routeRwhich connects the two
locations in a bus network, and maximizes (minimizes) the
number of passengers that takeR as its kNNwithout exceed-
ing a distance threshold. To solve the problem MaxRkNNT,
a brute force method can be used to find all candidate routes
whose travel distances do not exceed the distance threshold,
and then an RkNNT search can be executed on each candi-
date, and finally the one with maximum number of passen-
gers is selected as the answer. This method is shown to be
inefficient in our experimental study. Similar to RkNNT, it is
crucial to prune candidates which cannot be an optimal
route. Another challenge is how to support dynamic updates
as old transitions expire and new transitions arrive.

To this end, we propose to build a weighted graph using
the pre-computed RkNNT set for every vertex to solve the
MaxRkNNT problem. To generate valid candidate routes

for the MaxRkNNT query, we start from the starting vertex
and access its neighbor vertex v to compute a partial route
R. Then a graph reachability check on R is performed to see
whether the estimated lower bound travel distance of R is
greater than the threshold. Next, the dominance table of v is
checked to see if R can dominate other partial routes which
terminate at v. Further checks on the route are made when
Rmeets all the conditions.

In summary, the main contributions of this paper are:

� We investigate the RkNNT problem for the first
time, which serves as a fundamental yet frequently
adopted operator in many practical applications.
(See problem definitions in Section 3).

� We propose a filtering-refinement framework which
can prune routes using a filtering set (in Section 4) and
a Voronoi-based optimization to further improve the
efficiency (Section 5).

� We introduce MaxRkNNT (MinRkNNT) queries
which can be used to find the optimal route that
attracts the maximum (minimum) number of passen-
gers in a bus network (Section 6).

� We validate the practicality of our approaches using
real world datasets (Section 7).

2 RELATED WORK

In this section, we first compare the difference between our
work and classic RkNN search over point and moving
object data. Further, we will review related work on route
planning.

2.1 RkNNRkNN
RkNN on Spatial Points. Most existing RkNN search work
focuses on static point data, and often use pruning-refinement
frameworks to avoid scanning the entire dataset. However,
these approaches cannot easily be translated to route search
where both queries and collections consist of multi-point
trajectories.

Improving search performance has attracted much atten-
tion in previous work. The basic intuition behind filtering
out a point p is to find another point which is closer to p
than the query point q [7], [24], [29]. Here, we review the
half space method and use a simple example to show how
pruning works. Fig. 2 shows a query point q and a data
point p. As we can see, a perpendicular bisector divides the
whole space into two sub-spaces, and all points inside the
lower subspace prefer p as a nearest neighbor, such as point
r. For the reverse nearest neighbor search, r may be filtered
from the candidate set of query q. More specifically, r can be
filtered out if it can be pruned by at least k such points.

RkNN on Moving Objects. Given a moving object dataset
D and a candidate point set O ¼ o1; o2; . . . ; omð Þ as a query,
Shang et al. [21] aimed to find the optimal point from O
such that the number of moving objects that choose oi as a

Fig. 1. Passenger transitions and transit network.

Fig. 2. Half-space pruning.

758 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 4, APRIL 2018

Authorized licensed use limited to: New York University. Downloaded on January 03,2021 at 14:38:05 UTC from IEEE Xplore.  Restrictions apply. 



nearest neighbor is maximized. Specifically, they proposed
a Reverse Path Nearest Neighbor (R-PNN) search to find the
nearest point in O for the trajectory of a moving object, and
returned the point in O that is the nearest point for the maxi-
mal number of trajectories of moving objects.

Cheema et al. [8] proposed a continuous reverse nearest
neighbors query to monitor a moving object and find all static
points that take the moving object as one of the k nearest
neighbors. Recently, Emrich et al. [10] proposed a solution
for the problem of RNN search with “uncertain” moving
object trajectories using a Markov model approach. A mov-
ing object is treated as a result when it always takes the query
object as a nearest neighbor within a given time interval. All
of these approaches target a single point rather than a transi-
tion of multiple-points, which is the focus of our work.

2.2 Route Design and Searching
Traditional Transit Route Design. Bus network design is known
to be a complex, non-linear, non-convex,NP-hardproblem [9].
Based on existing bus networks, Pattnaik et al. [22] proposed a
heuristic method which uses a genetic algorithm to minimize
the cost of passengers and operators. Population estimation
anduser surveys [30] around the planned route are traditional
ways to estimate the number of passengers that may use the
planned travel route, such as Journey to Work2 which is data
collected as part of a census that describes aspects of commut-
ing behaviour. However, the data is usually out-of-date, and
may not reflect current travel patterns.

Data-driven Transit Network Design. A general approach to
transit network design is to use demand data from passengers
in addition to supply data from existing routes [11]. Supply
and demand data is usually abstracted as origin-destination
(OD) pairs, and can be used to identify the most profitable
routes. With the proliferation of GPS devices on mobile
phones and vehicles, demand data can be collected via mul-
tiple channels in real time, and several previous studies
have exploited such data.

By mining taxi data, Chen et al. [9] tried to approximate
night time bus route planning by first clustering all points
in taxi trajectories to determine “hot spots” which could be
bus stops, and then created bus routes based on the connec-
tivity between two stops. Similarly, based on human mobil-
ity patterns extracted from taxi data and smart card data,
Liu et al. [13] proposed a localized transportation choice
model, which predicts travel demand for different bus
routes by taking into account both bus and taxi routes.

Toole et al. [25] used census records and mobile phone
location information to estimate demand in transit routes.
Historical traffic data [1], smart cards [33], sensors [15], and
cellular data [17] can provide more comprehensive demand
data and be used to further improve data-driven transit net-
work design. Most of these studies employ data mining
methods, which scan the static and historical records for all
the customers. In contrast, RkNNT-based approaches can
efficiently maintain up-to-date results whenever there is an
update on the trajectory data; moreover, RkNNT query can
be answered efficiently which is critical to real-time decision
making. In other words, RkNNT augments the existing
data-driven methods for transit network design.

Optimal Route Searching. Given a starting vertex and an
ending vertex, the classical problem is to find the shortest

path in a graph. Best-first Search (BFS) and Depth-first Search
(DFS) are two commonly used algorithms for this problem.
An extension of this problem is k Shortest Path searching
(kSP) [2], [32], which aims to find the k shortest paths from a
start vertex s to a target vertex t in a directed weighted graph
G. Yen’s algorithm [32] is a derivative algorithm for ranking
the k shortest paths between a pair of nodes. The algorithm
always searches the shortest paths in a tree containing the k
shortest loop free paths. The shortest one is obtained first,
and the second shortest path is explored based on the previ-
ous paths. The Constraint Shortest Path (CSP) problem [4],
[14], [28] applies resource constraints on each edge, and sol-
ves the shortest path problem based on these constraints. An
example constraint in this scenario is the time cost.

3 PROBLEM DEFINITION

In this section, we formally define the RkNNT problem and
important notations are recorded in Table 1.

Definition 1 (Route). A route R of length n is a sequence of
points r1; r2; . . . ; rnð Þ; n � 2, where ri is a point represented by
(latitude, longitude).

Definition 2 (Transition). A transition T contains an origin
point to and a destination point td, which is also represented by
(latitude, longitude).

Both a route and a transition are composed of discrete
points called route point r and transition point t, respectively.
We use DT and DR to denote the transition set and route set.

Definition 3 (Point-Route Distance). Given a transition
point t 2 T and a route R, the distance distðt;RÞ from t to R
is the minimum Euclidean distance from t to every point of R,
and calculated as

distðt;RÞ ¼ min
r2R

distanceðt; rÞ (1)

Based on the point-route distance function, the kNN
search of a transition point t is defined as:
Definition 4 (kNN). Given a set of routesDR, the kNNNN search of

a transition point t 2 T retrieves a set S � DR of k routes such
that 8R 2 S, and 8R0 2 DR � S: distðt;RÞ � distðt;R0Þ.

TABLE 1
Summary of Notation

Notation Definition

R The route composed of points fr1; . . . ; rng
T The transition fto; tdg
Q Query route fq1; . . . ; qmg
DR, DT The route and transition sets

distðt;RÞ Distance from transition point t toR
?ðq; rÞ Perpendicular bisector between q and r

Hq:r,Hr:q Two half-planes divided by perpendicular bisector ?ðq; rÞ
Hr:Q,HR:Q Filtering space formed by Qwith r andR
CðrÞ Crossover route set of r

Sfilter, Srefine Filtering set and filtered node set

Scnd, Sresult Transition candidates and result set

rootr (roottÞ Root of Route R-tree (Transition R-tree)

VR;Q Voronoi diagram formed byR and Q

G Weighted graph

t Travel distance threshold

vðRÞ, cðRÞ RkNNT set and travel distance ofR in G
Mc½i�½j� Lower bound matrix of cðRÞwhereR starts from

vertex i to j

2. https://en.wikipedia.org/wiki/Journey_to_work
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In particular, two types of kNN are supported for a tran-
sition T , which can also be found in [10].

(1) 9 kNN: T takes R as a kNN iff there exists a point
t 2 T taking R as kNN. So, 9kNN(T ) ¼ kNNðtoÞ [
kNNðtdÞ.

(2) 8 kNN: T takes R as a kNN iff both points to and
td take R as their kNN. So, 8kNN(T ) ¼ kNNðtoÞ \
kNNðtdÞ.

Now, we can formally define the reverse k nearest neigh-
bor query over trajectories.

Definition 5 (RkNNT). Given a set of routesDR, a set of transi-
tions DT , and a query route Q, 9RRkNNTNNT ðQÞ (8RRkNNTNNT (Q))
retrieves all transitions T 2 DT , such that 8T , Q 2 9kNNNNðT Þ
(8kNNNNðT Þ).

Example 1. In Fig. 3, R1, R2, R3 and R4 are routes. T1; T2; T3;
T4; T5; T6 are transitions, and To

1 and Td
1 denote the origin

point and destination point for transition T1. The query
route Q is composed of 5 query points (in red). If we take
the 8RkNNT query, as point To

4 and Td
4 takeQ as the near-

est route, T4 will be the result of 8RkNNTðQÞ.

Lemma 1. Given a query Q, 8RRkNNTNNT ðQÞ � 9RRkNNTNNT ðQÞ.

Proof. Given a query Q, 8RkNNTðQÞ returns a set of transi-
tions where both origin and destination points have the
query as a kNN, such transitions will also belong to the
result of 9RkNNTðQÞ, so 8RkNNTðQÞ � 9RkNNTðQÞ.
Let DðQÞ ¼ 9RkNNTðQÞ � 8RkNNTðQÞ, 8T 2 D: T only
has one point that will take the query as a kNN, so
DðQÞ \ 8RkNNTðQÞ ¼ ;. tu

Using Lemma 1, the set of transition points which take Q
as kNN can be searched for first, and then 9RkNNTðQÞ
can be found by adding the corresponding routes. For
8RkNNT, we need to remove transitions that have only one
point in 9RkNNTðQÞ. Hence, a unified framework can be
proposed that answers both 9RkNNT and 8RkNNT. In the
rest of this paper, we use RkNNT to represent 9RkNNT by
default for ease of composition.

4 A PROCESSING FRAMEWORK FOR RkNNT

In this section, we first provide a sketch of our framework to
answer the RkNNT query for capacity estimation, which
includes the pruning idea based on routing points, and
the proposed index structures. Then we describe each step
in detail.

4.1 Main Idea
All impossible transitions are prunedusing aPruneTransition
algorithm, and the remaining candidates Scnd are further
verified using a RefineCandidates algorithm to generate
the final result set Sresult. Before pruning, a subset of routes
Sfilter needs to be generated for efficient pruning, the rea-
soning and approach are described in Section 4.1.1. In sum-
mary, the whole procedure is composed of the three steps
in Algorithm 1.

Algorithm 1. RkNNTðQ; rootr; roottÞ
Input: Q: query, rootr: the root node of RR-tree, roott: the

root node of TR-tree (see Section 4.1.2)
Output: Sresult: the result set.

1 ðSfilter;SrefineÞ  FilterRouteðrootr; Q; kÞ; // Section 4.2.1

2 Scnd  PruneTransitionðroott; Q;Sfilter; kÞ; // Section 4.2.2

3 Sresult  RefineCandidatesðQ;Scnd;SrefineÞ, // Section 4.2.3

4 return Sresult;

4.1.1 Pruning Characteristics

By Definition 5, a transition takes a route as a kNN if there
exists at least one point (in the transition) that will take the
route as a kNN. If there are more than k routes which
are closer to a point in a transition than the query, then the
point in this transition can be pruned. Such a route which
helps prune transitions is called a filtering route. If both
points of a transition are pruned, then the transition can be
pruned safely, so the pruning helps to find the filtering
routes to prune the transition points.

Lemma 2. If a transition point t is closer to a route point r 2 R
than Q, then t is closer toR than Q.

Proof. We have distðt;RÞ � distanceðt; rÞ according to
Equation 1. If distanceðt; rÞ < distðt; QÞ, then distðt;RÞ <
distðt; QÞ. tu

By Lemma 2, a transition point can be removed if it takes
a set of routing points from more than k different routes as a
kNN rather than the query. These points are called filtering
points. Next, we introduce how to prune a transition point
using the filtering point.

Recall the example in Fig. 2 where an RkNN can find an
area where the points inside the area will not take the query
as the nearest neighbor based on the half space. Similarly,
given a query Q, we choose a point r from a route R in DR;
then based on the straight line rqi formed by a point qi in Q
to r, the perpendicular bisector ?ðqi; rÞ is used to cut the
space into two half-planes: Hr:qi and Hqi:r which contain r
and qi, respectively. For every point qi in Q, there is a Hr:qi .
The intersection of all of the half spaces forms the filtering
spaceHr:Q defined as:

Definition 6 (Filtering Space). Given a route point r and a
query Q, the intersection of allHr:qi forms a filtering space

Hr:Q ¼
\
qi2Q

Hr:qi (2)

point rwhich belongs toR � DR is called as the filtering point.

As shown in Fig. 4, we can see that there are five perpen-
dicular bisectors. They form a polyline abcde which divides
the whole space into two sub-spaces, and the left part is the

Fig. 3. Example of routes and transitions.
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filtering spaceHR1:2:Q. As T5 is entirely located in this area, it
cannot take the query as its nearest route. The filtering space
can also help filter a set of points using spatial indexes (see
Section 4.1.2). If a maximum bounded rectangle (MBR) such
asMBR2 covering points To

6 and Td
6 is located entirely inside

the filtering space, then To
6 and Td

6 inside this MBR will not
take the query as a nearest neighbor and can be filtered out.

Every point in the route set DR can be a filtering point,
but we cannot choose all points in the route set DR to do
pruning especially when the whole set is large and located
in external memory. When pruning a transition point, the
process is costly if we access all route points every time. In
Section 4.2.1, we introduce how to generate a subset from
the whole route set. Overall, we can observe three key char-
acteristics based on the above analysis: 1) A filtering space
exists between the query and a route point; 2) If a transition
point is located in more than k filtering space of query Q
simultaneously, then the point can be pruned; and 3) It is
important to choose a subset of all routes as the filtering set.

4.1.2 Indexes

� RR-tree & TR-tree are two tree indexes for point
data fetched from route dataset DR and transition
dataset DT , respectively, and referred to as a Route
R-tree (RR-tree) and a Transition R-tree (TR-tree). The
tree indexes are created first, and every point in the
leaf node of RR-tree contains the ID for its route.
Every point in TR-tree also contains the IDs of the
transition it belongs to. Through the transition ID
and route ID in the node of RR-tree and TR-tree, we
can get the corresponding route and transition for
further refinement if two points of a transition are
both pruned, and the two filtering points belong to
the same route (See Section 4.2.3).

� NList. We need to find all of the routes that have a
point inside a given node for verification. Hence, for
each node in RR-tree, we create a list for every node
of RR-tree by traversing the whole tree bottom-up to
store all of the IDs for routes inside.

� PList. The inverted list of each route point is created
to store the IDs of the corresponding routes. As a bus
stop can be shared by many routes in a bus network,
we call this index a PList.

Our index supports dynamic updates, where new transi-
tions and routes can be added into the index easily as our
index is based on the R-tree and inverted lists.

4.2 Key Functions
This section describes: 1) how to generate the filtering set
Sfilter; 2) how to prune and find all the candidate routes
Scnd; and 3) how to verify the candidate routes and further
refine them to find the final query result Sresult.

4.2.1 Filtering Routes

In order to get a small filtering set Sfilter for a given query, an
empty filtering set Sfilter is initialized, and new route points
are added which cannot be pruned using the existing points
of a route in Sfilter. We organize all of the filter points into a
point list, sorted by the number of routes which cover each
point, and denote the route set and point set as Sfilter:R and
Sfilter:P , respectively, which are materialized using two
dynamically sorted hashtables. Specifically, for Sfilter:R, the
key is the route ID, and the values are points of this route
that cannot be filtered. For Sfilter:P , the key is the route point
ID, and the value is a list of routes containing the point.

In a real bus network, a route point can be covered by
several routes. If a filtering point is contained by more than
k routes, and a transition takes this filtering point as the
nearest neighbor rather than the query, then this transition
point can be pruned. We will employ this enhancement to
achieve more efficient pruning.

Definition 7 (Crossover Route Set). Given a route point r,
the set of routes which cover r is r’s crossover set, denoted as CðrÞ.

For example in Fig. 3, R1 and R4 intersect at the second
point R1:2, then CðR1:2Þ ¼ fR1; R4g. Using the PList, we
can retrieve the crossover route set of a point r easily, where
CðrÞ ¼ PList½r�. The crossover route set of each filter point
r 2 Sfilter:P can be sorted by jCðrÞj to give higher priority
to the points which are crossed by more routes in the fil-
tering phase.

Algorithm 2. FilterRouteðrootr, Q, k)

Output: Sfilter: filtering set, Srefine: filtered node set for
refinement

1 minheap ? , Sfilter  ? , Srefine  ? ;
2 minheap:pushðrootrÞ;
3 while minheap:isNotEmptyðÞ do
4 e minheap:popðÞ;
5 if e is a node then
6 if isFiltered(Q, Sfilter, e, k) then
7 Srefine:addðeÞ; // Filtered node set

8 continue;
9 if e is a point then
10 Sfilter:addðe; CðeÞÞ; // Filtering set

11 else
12 foreach child c of e do
13 minheap:pushðc;MinDistðQ; cÞÞ;
14 return ðSfilter;SrefineÞ;

To enrich the filtering set Sfilter with facility points near
to the query, starting from the root node of RR-tree, the fil-
tering algorithm iteratively accesses the entries of RR-tree
from a heap in ascending order of their minimum distances
to the query Q. If an accessed entry e of index can be

Fig. 4. Half-space pruning for a multi-point query Q.
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filtered—e is pruned by more than k routes—it can be
skipped (see Algorithm 3). Otherwise, if e is an intermediate
or leaf node, its children are inserted into the heap; if e is a
route point and cannot be filtered, it is inserted in the filter
set Sfilter and its half-space is used to filter the search space.
The filtering algorithm terminates when the heap is empty.
The details can be found in Algorithm 2.

The minimum distance from a child c to the query is
computed as the minimum distance from every query point
to the node c

MinDistðQ; cÞ ¼ min
q2Q

MinDistðq; cÞ (3)

In Line 10 of Algorithm 2, a point that cannot be pruned is
a filter point and is added into Sfilter. First the route ID of the
point is found, and inserted into Sfilter:R. Then the point is
inserted into the corresponding sorted point list Sfilter:P , and
each point is affiliatedwith a list of route IDs containing it.

Algorithm 3 shows how the filtering works. The filtering
of a node is conducted in two steps. In step 1 (Lines 2-10),
the filter points Sfilter:P are processed to do the filtering. All
points in Sfilter:P are sorted in descending order of the sizes
of their crossover route set, and are accessed in the order as
a point with a larger crossover route set is likely to have bet-
ter filtering power as previously discussed. If a filtering
point is found that can filter the node, then all affiliated
route IDs are added to S. If S contains more than k unique
route IDs, termination occurs and the node can be filtered
out. After checking all the filtering points, step 2 (Lines 11-
16) is initiated, and the routes inside Sfilter:R are used for fil-
tering. Finally, the filtering method based on Voronoi dia-
grams is employed (Section 5.1).

Example 2. Recall the query in Fig. 4. We access the
RR-tree to form the filtering point set from root to leaf.
Initially, the filtering set is composed of the points which
are closest to the query, such as R1:2. Given an MBR

0
that

bounds R2:1 and R1:1, Algorithm 3 can be used to prune
MBR

0
, as it is completely located inside the filter space,

but must still be added to Srefine for further verification as
discussed in Section 4.2.3.

Algorithm 3. IsFilteredðQ, Sfilter, node, k)
Output:whether the node can be filtered

1 S  ;;
2 foreach p 2 Sfilter:P do

// access list points in descending order

3 if S:size > k then
4 return true;
5 label true;
6 foreach q 2 Q do
7 if node located inHp:q then
8 label false;
9 if label ¼ true then
10 S  S [ CðpÞ // crossover route set

11 S
0  Sfilter:R� S;

12 foreach route 2 S
0
do

13 if S:size > k then
14 return true;

// see Section 5.1

15 if VoronoiFilteringðQ; route; nodeÞ then
16 S  S [ frouteg;
17 return false;

4.2.2 Transition Pruning

Based on the filter set Sfilter, entries e from TR-tree are
added to a heap which is sorted by the distance to the query
in ascending order, and checked to see if they can be pruned
by Sfilter using Algorithm 3. Algorithm 3 uses the candi-
dates in Sfilter to check whether e is located in a filtering
space of Q. The transition points that cannot be pruned are
considered as candidates for refinement.

Algorithm 4. PruneTransitionðroott, Q, Sfilter, k)
Output: Scnd: candidate set

1 minheap ? , Scnd  ? ;
2 minheap:pushðroottÞ;
3 while minheap:isNotEmptyðÞ do
4 e minheap:popðÞ;
5 if e is a Node then
6 if isFiltered(Q, Sfilter, e, k) then
7 continue;
8 if e is a point then
9 Scnd:addðeÞ;
10 else
11 foreach child c of e do
12 minheap:pushðc;MinDistðc;QÞÞ;
13 return Scnd;

Algorithm 4 describes the procedure to prune the transi-
tion points using the generated filter set Sfilter fromTR-tree. It
is similar to the filtering method for generating the filtering
set. The main difference with the traversal of RR-tree is that
only the unpruned points need to be stored, and the filtering
set Sfilter is fixed. As a result, a set of transition points Scnd is
obtainedwhich takes the query routes as k nearest neighbors.

Example 3. To prune the transitions, each node is checked
with TR-tree to see if it can be pruned by Sfilter. As shown
in Fig. 4, when R1:2 is used to prune MBR1 with Algo-
rithm 3, it cannot be pruned as it is not located completely
within the filtering space HR1:2

: Q. If it is not pruned by
other points in the filtering route set in the end, its children
MBR2 and MBR3 will be accessed, and further pruning
of MBR2 is required as it is located in the filtering space.
For MBR3, if it is not pruned by any route point, then its
children To

3 and To
4 are added into the candidate set Scnd.

4.2.3 Candidate Verification

Candidate verification is implemented in the Refine
Candidates method. It mainly uses the filtered node set
Srefine during the traversal of RR-tree to find Sfilter in Algo-
rithm 2. It can be divided into two steps. First, the nodes in
RR-tree encountered during the filtering phase are kept in
Srefine in Line 7 of Algorithm 2. The verification algorithm
runs in rounds. In each round, one of the nodes in Srefine is
opened and its children are inserted into Srefine. During each
round, the nodes and points in Srefine are used to identify
the candidates that can be verified using Srefine, which
are the nodes confirmed as RkNNT, or guaranteed not to be
RkNNT. Such candidates are verified and removed from
Scnd. The algorithm terminates when Scnd is empty. The
result set is then stored for a second round of verification.

To verify a candidate effectively, if more than k routes are
found in Srefine which are closer to the query than the candi-
dates, then it can safely be removed from Scnd. Hence, we
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maintain a set to store the unique IDs of these routes when
every candidate point is checked in Scnd. The route IDs are
found, and the set is updated usingNListwhen new filtering
points or nodes from Srefine are found. When the number of
IDs in a set is greater than k, it can be removed from Scnd.

After finding the transition points for the routes, they will
take the query as k nearest neighbors, so for 9RkNNT, the
transition IDs for all remaining points can be returned as the
final result Sresult in the second step. For 8RkNNT, if a transi-
tion only has one point in the result set, then it will be pruned,
and only the transitions which have both points in the result
will be considered as the real result and added toSresult.

Example 4. In the verification stage, Srefine is used to verify
Scnd because Sfilter cannot prune Scnd. For To

3 and To
4 in

Scnd, MBR
0
, which covers R2:1 and R1:1, is chosen to com-

pute the minimum distance. If the node is closer to the
transition point, such as is the case with To

3 , the candidate
can be pruned as it will not choose the query as nearest
neighbor; otherwise, its child nodes are accessed and
checked until there are more than k routes closer to the
candidate than the query route. After checking all the
nodes in Srefine, the surviving points in Scnd are returned
as the result.

4.3 Computational Complexity Analysis
In this section, we will analyze the time complexity of
Algorithm 1. We have two datasets: DR and DT , here we
use jDRj and jDT j to denote the number of points in each
dataset. Let the number of filtering points be jSfilterj and the
number of filtered route nodes be jSrefinej.

First, we analyze the complexity of filtering a node. Every
filtering point is checked against nodes or points, and costs
Oðk 	 jSfilterj 	 jQjÞ at most. The filtering complexity over
RR-tree is Oðk 	 jSfilterj 	 jQj 	 jNMBRðRR-treeÞjÞ, where jNMBRj
is the number of scanned nodes in RR-tree. Similarly, the
complexity of filtering and verification over TR-tree will be
Oðk 	 jSfilterj 	 jQj 	 jNMBRðTR-treeÞjÞ and Oðk 	 jSrefinej 	 jQj 	
jNMBRðTR-treeÞjÞ, respectively. Hence, the total complexity

is Oðk 	 jDT jf 	 jSfilterj 	 jQjÞ þ Oðk 	
jDT j
f 	 jSrefinej 	 jQjÞ, as the num-

ber of scanned nodes are proportional to the number of
facility points and routes, where f is the fanout of the
R-tree. In most cases, jDT j 
 jDRj, so we can ignore the
route filtering in Algorithm 2, and the complexity is

CðRkNNTÞ ¼ O k 	 jDT j
f
	 ðjSfilterj þ jSrefinejÞj 	 jQj

� �

¼ O k 	 jDT j 	 jDRj
f2

	 jQj
� � (4)

Note that the fanout f is usually set according to the page
size of disk to reduce I/O costs [12], [31]. A large f results
in a case that leaf nodes cannot be completely located in the
filtering space, so the probability of it being filtered is
reduced, and its children must be scanned too, which leads
to increased I/O costs.

5 OPTIMIZATION OF THE FILTERING PROCESS

5.1 Voronoi-Based Filtering
One problem of the filtering method in Algorithm 3 is that
the filtering space obtained from a single point and the
query is usually very small. For example in Fig. 4, MBR1

cannot be pruned, so it needs to load MBR2 and MBR3 to
perform further checks, which require additional pruning
time. To further enlarge the pruning space, the available
filtering points in a single route can be used rather than a
single point to perform the pruning, namely, Sfilter can be
used for additional pruning. Given a query and a filtering
route R, a larger filter space can be explored. To find this
area, Voronoi cells can be used.

To accomplish this, a plane is partitioned with points into
several convex polygons, such that each polygon contains
exactly one generating point, and every point in a given
polygon is closer to its generating point than to any other.
The convex polygon of one point is the Voronoi cell, and the
point is the kernel of this cell. By plotting the Voronoi dia-
gram VR;Q between the query Q and a filtering route R, as
shown in Fig. 5, the Voronoi cell VR;Q½p� of the route R can
be found, and any point inside these cells are closer to the
filtering route than the query. Furthermore, if a node does
not intersect with any cell of the query, then any point
inside this node will be closer to the filtering route than the
query. If a node can find more than k such filtering routes,
then the node can be pruned.

Definition 8 (Voronoi Filtering Space). Given a filtering
routeR and query Q, we define the Voronoi filtering space as

HR:Q ¼
[
p2R
VR;Q½p�; (5)

which is the union of the Voronoi cells of all points from R,
and VR;Q is the Voronoi diagram of the union of the points
fromR and Q.

Any transition point inside HR:Q cannot have Q as the
nearest neighbor. As shown in Fig. 5, for any point in the
Voronoi filtering space, it can find a point in the filtering
route which is closer than any point in the query. Hence,
two points in a transition can both find a point in the filter-
ing route rather than the query, so the transition point will
not take the query as a nearest neighbor.

The filtering route R is used to further prune the transi-
tion point if it cannot be pruned by the filter points inR one
by one as shown in Lines 2-10 of Algorithm 3. After scan-
ning all the filtering points of a route in Sfilter:P , we will use
the Voronoi filtering space of the route for the query to
prune the transition points, where the space has been cre-
ated after getting the filtering route set. Then the pruning

Fig. 5. Pruning based on the Voronoi diagram of a query (red) and a
filtering route composed of 4 points (black).
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space will be larger, and we can find another route which is
closer to the entry than the query if it can prune the entry.

For example, consider the 4 points belonging to a same
route R1 to prune the transition points in Fig. 5. The filtering
space is larger than the area shown in Fig. 4, and MBR1 is
entirely located within the filtering space, so it can be
pruned from consideration. Since the Voronoi diagram can
be produced at the same time as when the perpendicular
bisectors from query to every filtering point are computed,
then there is no additional cost to generate the Voronoi
information. This additional pruning rule improves the
probability of a node being pruned.

5.2 Divide & Conquer Method
Note that the processing costs of the proposedmethod is high
when the query has many points. The main reason is that a
node has to be filtered by every query point, and the probabil-
ity of a point being pruned will be lower when the query is
long. To alleviate this problem, we introduce a divide-and-
conquermethod based on our processing framework.

Lemma 3. The RkNNT of a multi-point query is the union of the
RkNNT of all points in a query

RkNNTðQÞ ¼
[
qi2Q

RkNNTðqiÞ: (6)

Proof. For a transition, if it takes a query point as a k nearest
neighbor, then it must be an RkNNT result for Q, soS

qi2QRkNNTðqiÞ � RkNNTðQÞ. For each transition in

RkNNTðQÞ, it must take one query point inQ as the kNN,

thenRkNNTðQÞ �
S

qi2QRkNNTðqiÞ. Based on these two

observations,RkNNTðQÞ ¼
S

qi2QRkNNTðqiÞ. tu

Based on this observation, a divide and conquer frame-
work is proposed that uses multiple RkNNT searches which
were introduced in Section 4. The main idea is that RkNNT
search is performed for every query point to find a candi-
date transition point set for every query point first, and then
the transitions containing these points are merged to get the
final transition result.

Even though an RkNNT query mainly targets a route
query, it can process single-point queries as well since every
step in the algorithm does not require that the query have
more than one point. According to Definition 6, the filtering
space will be the largest when there is only one query point,
so the pruning efficiency will be the highest when compared
with any multi-point query which extends from this single
query point.

6 OPTIMAL ROUTE PLANNING

In this section, we present a solution to the route planning
problem with a distance threshold based on RkNNT. We

first define a new query called MaxRkNNT. A baseline
method is proposed first, and then an efficient method
based on pre-computation and pruning is described.

6.1 Maximizing RkNNT in a Bus Network
In bus route planning, the goal is to attract the maximum
number of passengers within a given distance threshold,
since a single bus cannot cover all stops in a city. For
Uber drivers, such a route also means more opportunities
to maximize profit due to the surge pricing policy. Next,
we will introduce the maximizing RkNNT problem for
bus networks.

We use the real bus networks in NYC and LA as an
example. To compute the ratio between the travel distance
and the straight line distance between start and end bus
stops, Fig. 6 shows that the ratio does not exceed 2 in most
bus routes. Hence, such a distance constraint always exists
in real-life route planning.

We first cast the existing bus network as aWeighted Graph.

Definition 9 (Weighted Graph). G ¼ ðE; V Þ is a weighted
graph, where V is the vertex set andE is a set of edges which con-
nect two vertices among V . A route in G is a sequence of vertices
R ¼ ðv1; v2; . . . ; vnÞ 2 V � V � 	 	 	 � V such that vi is adjacent
to viþ1 for 1 � i < n, v1 and vn are the start and end vertex.

Given a route R, cðRÞ is the travel distance from start to
end through every vertex in the route

cðRÞ ¼
X

pi2R&i2½1;n�1�
distanceðpi; piþ1Þ; (7)

Recall Definition 5, given a route R in G, among the tran-
sition set DT , the RkNNT of R can find all transitions that

would choose it as a kNN. The passengers who are likely

to take R are the RkNNT set of R. Let vðRÞ ¼ RkNNTðRÞ
for simplicity. We now formally define the Maximizing

RkNNT (MaxRkNNT) problem for route planning.

Definition 10 (MaxRkNNT). Given a threshold t, a source
vertex vs and a destination vertex ve, MaxRkNNTðvs; ve; tÞ
returns an optimal route R from Sse such that 8R0 2 Sse �R,
jvðRÞj � jvðR0 Þj and cðRÞ � t, where Sse is the set of all pos-
sible routes in G that start from vs and end at ve.

Similarly, MinRkNNT can be defined by changing
jvðRÞj � jvðR0 Þj to jvðRÞj � jvðR0 Þj in Definition 10. In this
paper, we propose a search algorithm which can solve
both MaxRkNNT and MinRkNNT. By default, we choose
MaxRkNNT for ease of illustration.

Baseline. The simplest brute force method forMaxRkNNT
is to find all candidate routes which meet the travel distance
threshold constraint. This can be accomplished by extending
the k shortest path method proposed by Yen [32] and also by
Martins et al. [16] with a loop to find the sub-optimal route
until the distance threshold t is met. Then an RkNNT query
is ran for each candidate and the onewithmaximumnumber
of results is selected as the optimal route.We call thismethod
BF. Recall the query in Fig. 7, where almost all routes such as

abej, acej and acehjwill be candidates.
However, the performance of RkNNT decreases as the

number of points increases, which is discussed inmore detail
in Section 7.3. For bus route planning, it may be tolerable
to wait for a few seconds to conduct MaxRkNNT query.
However, for real time queries, like identifying profitable

Fig. 6. Frequency histogram of the ratio between travel distance and
straight-line distance for all routes in LA and NYC.

764 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 4, APRIL 2018

Authorized licensed use limited to: New York University. Downloaded on January 03,2021 at 14:38:05 UTC from IEEE Xplore.  Restrictions apply. 



routes for Uber drivers, this method is less desirable.
To achieve better performance, an efficient route searching
algorithm is proposed based on the pre-computation of the
RkNNT set for each vertex in G.

Complexity of the Baseline Method. The complexity of state-
of-the-art approach for k shortest path (kSP) search [2] is

CðkSPÞ ¼ OðjEj þ jV jlogjV j þ jRjÞ; (8)

where jRj is the number of routes that do not exceed the
travel distance threshold from source to end in the graph.
To answer a MaxRkNNT, we need to know the RkNNT of
each scanned vertex during graph traversal. So, the overall
time complexity can be computed as

CðMaxRkNNTÞ ¼ CðRkNNTÞ 	 jRj þ CðkSPÞ

¼ O k
jDT jjDRj

f2
jQjjRj

� �
þOðjEj þ jV jlogjV j þ jRjÞ:

(9)

As we can see, it is impossible to search for the jRj short-
est paths in real time for a graph containing a large amount
of transition data. Moreover, jRj, the number of candidate
routes from kSP, is also very large when the constraint of
travel distance is loosely interpreted. To avoid spending too
much time on an RkNNT for a vertex, a better solution is to
pre-compute them and update the capacity of each vertex
regularly when inserting new transitions. Moreover, using
pre-computed capacities can help filter out impossible
routes in advance. More details on this idea can be found in
Section 6.2.2.

6.2 Our Solution
According to Lemma 3, the query Q can be decomposed
into jQj points, which means that we can get the pre-com-
puted RkNNT set for every vertex, and perform a union
operation on all vertices in a route to get the final RkNNT
set for that route.

By using the above property, we introduce a pre-compu-
tation based method with a fixed k which provides better
performance. Note that even though k should be fixed in
the pre-computation, multiple datasets of representative k
can be generated in advance to meet different requirements.

6.2.1 Pre-Computation

For every vertex in G, an RkNNT query is ran, and the result
stored. A pre-computed matrix Mc½i�½j� is created which
stores the pre-computed all-pair shortest distance for all
vertexes in G using the Floyd-Warshall algorithm [18]. The
details of pre-computation can be found in Algorithm 5.

Algorithm 5. PrecomputationðG, DR, DT , k)
Output: G:V : the vertexes with RkNNT set

1 roott  CreateIndexðDT Þ; // root of TR-tree
2 rootr  CreateIndexðDRÞ; // root of RR-tree
3 foreach vertex v 2 G do
4 Sresult  RkNNTðv; rootr; roottÞ; // call Algorithm 1

by query v
5 G:V:RkNNTðvÞ  Sresult; // update the set on vertex

6 foreach vertex v0 2 G � v do
7 Mc½v�½v0�  ShortestDistanceðG; v; v0 Þ;
8 return G:V ;

With the pre-computed RkNNT set, we can further
improve the performance of the baseline method BF. After
getting all candidate routes that do not exceed the distance
threshold, the RkNNT set of each route can be found by per-
forming a union operation on the sets. Compared with the
baseline method, the on-the-fly RkNNT query is replaced
with pre-computation, and the running time is reduced to
the search time of k shortest path search. However, it is still
possible to leverage distance constraints and dominance
relationships to prune additional routes in advance.

Example 5. As shown in Fig. 7, the red points are the start
O ¼ a and end D ¼ j respectively. A query formed by
these two points and t ¼ 6 return the route with largest
RkNNT set, where the number on each edge is the dis-
tance between two vertices, and the label is the vertex ID.
The table shows the pre-computed RkNNT set for each
vertex. So, vðacfhjÞ ¼ fT1; T2; T3; T4; T6g and cðacfhjÞ ¼
1þ 1:5þ 1:4þ 1:5 ¼ 5:4.

Algorithm 6. MaxRkNNT(o, d, t)

Output: R: the optimal route
1 if checkReachabilityðvs; ve; tÞ then
2 return ? ;
3 R ? , R�  fvsg;
4 cðR�Þ  0 // travel distance

5 vðR�Þ  G:V:RkNNTðvsÞ // RkNNT set

6 Q  ? // queue stores the partial routes

7 pushðQ; fR�;cðR�Þ;vðR�ÞgÞ;
8 max jvðR�Þj ;
9 while Q 6¼ ? do
10 fR�;cðR�Þ;vðR�Þg  popðQÞ;
11 vi  GetEndðR�Þ;
12 foreach vj 2 NeighborðG; viÞ do
13 if checkReachabilityðvj; d; t � cðR�ÞÞ then
14 if checkDominanceðo; vj;cðR�Þ;vðR�ÞÞ then
15 S  UpdateðDT ½d�;cðR�Þ;vðR�ÞÞÞ;
16 foreach candidate 2 S do
17 DeleteðQ; candidateÞ;
18 R�  R� [ fvjg;
19 cðR�Þ  cðR�Þ þ cðvi; vjÞ;
20 vðR�Þ  vðR�Þ

S
G:V:RkNNTðvjÞ;

21 pushðQ; fR�;cðR�Þ;vðR�ÞgÞ;
22 if GetEndðR�Þ ¼ ve then
23 if jvðR�Þj > max then // new optimal route

24 R R�;
25 max jvðR�Þj;
26 return R;

Fig. 7. An exemplar graph with a query ða; j; 6Þ where a and j are the
start and end vertexes, t ¼ 6 is the distance threshold, and the table
shows the RkNNT set for each vertex.
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6.2.2 Route Searching by Pruning

After getting the RkNNT set for every vertex in the graph G,
Algorithm 6 can be ran to get the optimal route based on
the pre-computed Euclidean distance of every edge. Specifi-
cally, the neighbor vertices are accessed around the starting
point, and two levels of checking are performed to see
whether the current partial route R� is feasible. If it is, it is
inserted into the priority heap Q, and the partial route is
increased until it meets the end point ve and has the maxi-
mum result set size.

The two checking functions are:

(1) checkReachability: This pruning function checks
whether the current route meets the distance con-
straint–namely that the distance from the current
vertex to the end vertex is less than t � cðR�Þ. When
Mc½vj�½d� > t � cðR�Þ, it will return false and move
to the next neighbor of vertex vi in G.

(2) checkDominance: This pruning function exploits the
dominance relationship between two partial routes.
If a partial route exists that ends at the same vertex
and has a shorter route and a larger RkNNT set,
then it can dominate the current route.

The following lemma is introduced for dominance
relationship which works for both 8RkNNT and 9RkNNT.

Lemma 4. Given two partial routes R�1 and R�2 which have the
same start and end, R�1 dominates R�2 in MaxRkNNT (R�2
dominates R�1 in MinRkNNT) when jcðR�1Þj < jcðR�2Þj and
j8RkNNTðR�1Þj > j9RkNNTðR�2Þj.

Proof. To prove the lemma, we use vðRÞ and v�ðRÞ to rep-
resent 9RkNNTðRÞ and 8RkNNTðRÞ for clarity. Given
any partial route R

0
which starts at vj and ends at d, R�1

and R�2 can be connected to form two complete routes
R1 and R2. 1) For 9RkNNT, if jv�ðR�1Þj > jvðR�2Þj, then
jvðR1Þj � jv�ðR�1Þj þ jvðR

0 Þj, as there is no intersection
between v�ðR�1Þ and vðR0 Þ because T 2 v�ðR�1Þ is the set
of transitions that have kNN in R�1 for both origin and
destination points. Given that jvðR2Þj � jvðR�2Þj þ jvðR

0 Þj,
jvðR1Þj > jvðR2Þj, while cðR�1Þ < cðR�2Þ, 2) 8RkNNT,
jv�ðR2Þj � jvðR�2Þj þ jv�ðR

0 Þj, while jv�ðR1Þj � jv�ðR�2Þj þ
jv�ðR0 Þj, so jv�ðR1Þj > jv�ðR2Þj. Without further spread-
ing, we can see the priority relationship between jvðR�1Þj
and jvðR�2Þj holds. tu

In Algorithm 6, a dynamic table DT is maintained to
store the pairs for every vertex accessed, and updates
continue when new feasible partial routes are explored dur-
ing the search. This is used to compare the RkNNT set and
the travel distance of partial routes. The entry for a vertex v
inserts a partial route R� which ends at v when an existing
partial route cannot be found which dominates R�. After
insertion, old entries in DT dominated by the new route R�

are removed. If a new one dominates R�, the loop termi-
nates and the next partial route is processed.

Example 6. In Fig. 7, ffag; 0; 20g is added to the queue Q
after checking the reachability from a to j by comparing
the pre-computed shortest distance with t. Then, pop the
queue Q to get the partial route R. Next, the last point a
of R is checked to see if its neighbor b can be reached, and
it can since cðbejÞ ¼ 3:8 < ð6� 1:6Þ. So ffa; bg; 1:6; fT1gg
is added to Q. Similarly, fa; cg is inserted into G. fa; dg

cannot be enqueued as the shortest distance from d to j is
cðdfhjÞ ¼ 5:2 > ð6� 1Þ. ffa; b; eg; 3:1; fT1; T2gg and ffa;
c; eg; 2:6; fT1; T2; T3; T4gg are enqueued and DT ½e� ¼ ffa;
b; eg; 3:1; fT1; T2gg is updated. Further, ffa; c; f; hg; 3:9;
fT1; T2; T3; T4gg is enqueued. ffa; b; e; hg; 4:5; fT1; T2gg has
a greater travel distance, and vðabehÞ ¼ fT1; T2g, and

v�ðacfhÞ ¼ fT1; T2; T3; T4g, so jv�ðacfhÞj > jvðabehÞj, and
acfh dominates acfh. Based on this extension in the
graph, whenQ is empty, the algorithm terminates.

For MinRkNNT, Line 8 is changed to max 1, and
Line 23 is changed to jvðR�Þj < max. Moreover, one addi-
tional check called checkBoundsðmax;vðR�ÞÞ after Line 14
in Algorithm 6 is added. Given a partial route R� and the
existing optimal route R and max, R� can be discarded
when jvðR�Þj > max as R� cannot beat the existing opti-
mal route R.

7 EXPERIMENTS

7.1 Setup
We performed experiments to evaluate our solutions for
RkNNT and MaxRkNNT using real bus route data and
check-in data from Foursquare3 in New York and Los
Angeles, which are two largest cities in the USA. Moreover,
we further produced a synthetic dataset which is normally
distributed in NYC. We have published our dataset4 to
improve the reproducibility of our results. Fig. 8 shows the
heatmap of the route and check-in datasets. All experiments
were performed on a machine using an Intel Xeon E5 CPU
with 256 GB RAM running RHEL v6.3 Linux, implemented
in C++, and compiled using GCC 4.8.1 with -O2 optimiza-
tion enabled. The node size of TR-tree and RR-tree is set as
4 KB, which means that a single node may contain hun-
dreds of child nodes at most.

Route Datasets. We use two real bus network datasets,
namely NYC-Route and LA-Route. We extracted the data
from the GTFS datasets of New York5 and Los Angeles.6

Table 2 provides a breakdown of each dataset.
Transition Datasets. Two real transition datasets, NYC-

Transit and LA-Transit, were produced by cleaning the
Foursquare check-in data [3], and statistics for the cleaned
data is shown in Table 3. Specifically, we divided a user’s
trajectory with multiple points into several transitions with
two points. A trajectory with n points can be divided into
n� 1 transitions. Since the real dataset is small, we also

Fig. 8. The heatmap of the bus route dataset (left) and the transition
dataset (right) in NYC (up) and LA (down).

3. https://foursquare.com/
4. https://sites.google.com/site/shengwangcs/home/rknnt
5. http://web.mta.info/developers/developer-data-terms.

html#data
6. http://developer.metro.net/gtfs/google_transit.zip
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generated a synthetic dataset which contains 10 million tran-
sitions for the NYC dataset, and refer to it asNYC-Synthetic.

7.2 Evaluation of RkNNT
Algorithms for Evaluation. We compared the following meth-
ods when processing RkNNT over the two datasets.
(1) Filter-Refine (FO): the basic framework proposed in
Section 4; (2) Voronoi (VO): the Voronoi-based method
which can create a larger filtering area by drawing a Voro-
noi diagram based on the query and filtering route after
regular filtering by points; (3) the Divide-Conquer (DC)
method which is proposed in Section 5.2.

Queries. We prepared two query sets: the first set is a syn-
thetic query set for the purposes of parameter evaluation, and
generated as follows: 1) We randomly generated 1,000 points
from DR. 2) We iteratively chose each point as a start point,
and append new points one by one with a limited rotation
angle to simulate a realistic case. The rotation angle of every

time extension does not exceed 90
, so the query route will
not zigzag [9]. All experimental results are reported as the
mean of all 1,000 queries. The second query set contains all
the routes in NYC-Transit and LA-Transit, which are used as
queries to test ourmost efficientmethod,Divide-Conquer.

Parameters. Table 4 summarizes all key parameters for a
query, and the default values are underlined. I ¼ cðQÞ

jQj is the
interval length between two adjacent points in the query,
where cðQÞ is the travel distance of the query route com-
puted by Equation 7.

Effect of k. Fig. 9 shows that the time cost for all three
methods will increases as k increases. This is because it is
unlikely that a point can be filtered by k filtering routes
when k is large. Fig. 10 further shows the breakdown of
time cost to the filtering and verification on the LA dataset.

Effect of Qj j. Fig. 11 shows the running time of our three
methods. As more points are added into the query, Filter-
Refine and Voronoi exhibit a sharp increase in running time.
Since these methods need more time to check whether
a node can be filtered, the filtering space becomes smaller
and the probability of being pruned decreases. In contrast,
Divide-Conquer shows almost a linear increase. This is
probably a result of the whole query being divided into jQj
queries, and a node is not be pruned by checking every query
point. Fig. 12 shows a breakdown of the running time to
the tasks of filtering and verification on the LA data, and the
verification occupies more than 80 percent for most cases. In
Fig. 13, we also test on the synthetic dataset by adjusting k
and jQj, it shows a similar trend to Figs. 9 and 11.

Effect of I . We observe that the intervals I between two
adjacent points vary from route to route in real life. Hence,
we conducted experiments to see how the running time is
affected in this scenario. Asmentionedwhen describing query
generation, the size of the query is increased by appending
randomly generated points, one at a time. Figs. 14 and 15

TABLE 2
Route Datasets

Dataset DRj j jG:Ej jG:V j
LA-Route 1,208 72,346 14,119
NYC-Route 2,022 61,118 16,999

TABLE 3
Transition Datasets

Dataset DTj j Latitude Longitude

LA-Transit 109,036 [32
; 35
] [�120
;�117
]
NYC-Transit 195,833 [39
; 42
] [�75
, �72
]
NYC-Synthetic 10,000,000 [39
; 42
] [�75
, �72
]

TABLE 4
Parameter Settings

Parameter Value

Qj j 3, 4, 5, 6, 7, 8, 9, 10
k 1, 5, 10, 15, 20, 25
I : Interval of route 1 km, 2 km, 3 km, 4 km, 5 km, 6 km
cðseÞ: Length of route 10 km, 20 km, 30 km, 40 km, 50 km
t

cðseÞ: Ratio of travel distance1, 1.2, 1.4, 1.6, 1.8, 2.0

Fig. 9. Effect on running time with the increasing of k.

Fig. 11. Effect on running time with the increasing of jQj.

Fig. 10. Breakdown of running time with increasing k in LA.

Fig. 12. Breakdown of running time w.r.t. jQj in LA.

Fig. 13. Effect on running time with the increasing of jQj and k in syn-
thetic dataset.
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show that there is a slight increase on the running timewhen I
is large. The main reason is that when two query points are
close, a node can be filtered by a filtering point easily, while
when the intervals are large, it is harder to filter a node.

Real Route Queries. After testing the effect of each individ-
ual parameter, we took every route in each dataset as a query
to evaluate our best method Divide-Conquer. Note that
before running each query, we removed the points of this
route from the RR-tree index. Fig. 16 shows that over 90 per-
cent of the queries can be processed in less than 5s. The main
reason is the relationship to the number of points in the query.

Index Update. The time cost of index creation and updates
is shown in Table 5. We inserted 10 to 50 thousand transi-
tion points into the index, respectively, and observe that
every insertion costs less than 1 ms even when using the
largest dataset—Synthetic. The main reason is that the route

dataset is fixed, so RR-tree, NList and PList are also fixed,
and only TR-tree must be updated when transitions are
inserted. Therefore, the main cost when performing updates
comes from TR-tree.

I/O & Pruning. Table 6 shows the the number of page
accesses in RR-tree and TR-tree for all three methods over
two datasets with various parameters. The filtering effec-
tiveness is shown on the right side of table. We can see
that the I/O increases as k and I increase, and jQj affects it
the most (see the bold numbers in 3rd column). Interest-
ingly, we also find that more filtering nodes and points do
not always translate to higher efficiency (see the bold num-
bers), as an efficient algorithm such as DC always prunes
upper-level nodes early, while non-efficient algorithms
cannot achieve early stage pruning, but access more lower-
level child nodes or points. In summary, our main observa-
tions are:

1) Divide-Conquer consistently has the best perfor-
mance in terms of running time and I/O, followed
by Voronoi, with Filter-Refine being the worst.

2) All three methods are sensitive to k and jQj. Only
Filter-Refine and Voronoi are sensitive to the interval
length I of the query.

3) When taking existing routes as real queries, most
queries can be answered efficiently using Divide-
Conquer.

7.3 Evaluation ofMaxRkNNT
Algorithms for Evaluation. (1) BruteForce: the baseline method
which uses the k shortest paths [32] to find all the routes which
have a smaller travel distance than the distance threshold t,
after which an RkNNT query is performed on every candi-
date to choose the maximal one. (2) Pre: the method that
extends BruteForce by pre-computation of the RkNNT set
for every vertex without an on-the-fly RkNNT query.
For MaxRkNNT and MinRkNNT, both can be solved using
the same pruning techniques with little difference in bound

Fig. 14. Effect on running time with the increasing of I .

Fig. 15. Breakdown of running time with increasing I in LA.

Fig. 16. The distribution of running time when taking all existing bus
routes as query byMaxRkNNT when k ¼ 10.

TABLE 5
Index Update Performance

Dataset DTj j +10k +20k +30k +40k +50k

LA 2.21 s 0.56 s 0.76 s 1.88 s 2.32 s 2.62 s
NYC 3.10 s 0.65 s 1.44 s 1.65 s 2.33 s 2.83 s
Synthetic 13 m 18.56 s 4.37 s 5.82 s 6.35 s 7.33 s 8.65 s

TABLE 6
Statistics of I/O and Pruning Effectiveness

Parameter

I/O (#accessed nodes) Pruning nodes/points in TR-tree

LA NYC LA NYC

FR VO DC FR VO DC FR VO DC FR VO DC

k 1 66 58 58 85 85 78 938/2423 922/3351 2554/4543 841/3131 977/4224 2695/6779
5 90 71 71 111 90 90 950/2477 918/3518 2642/4896 850/3209 1002/4438 2852/7276
10 614 418 339 842 606 466 934/2496 916/3576 2750/5052 839/3259 1009/4600 2950/7728

jQj 3 406 221 206 71 61 61 928/1999 1002/3238 1676/2786 651/1983 713/1834 829/1743
7 818 666 466 222 122 122 2104/3764 2234/5274 3754/7374 723/4293 1239/5213 2157/8129
10 1189 1021 594 268 128 128 4016/8912 4761/10692 5281/12049 751/4542 1451/7245 2945/9046

I 1 543 351 305 108 88 88 918/2436 921/3435 2702/4638 841/3251 1021/4561 2903/7521
3 602 398 330 111 90 90 936/2481 911/3556 2701/4983 852/3277 990/4552 2726/7550
6 697 563 406 119 94 94 947/2790 913/3642 2716/5752 854/3315 962/4433 2493/7578
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checking, which has a small impact on performance.
We denote them as (3) Pre-Max and (4) Pre-Min.

Queries. To test the effect of key parameters, we first gen-
erated a point set by choosing 1,000 start points randomly
from our route datasets. Then, we searched 6 end points for
every start point with different cðseÞ, which is the distance
between the origin and the destination, as shown in the last
row of Table 4. Furthermore, we used existing representa-
tive routes as queries and employed MaxRkNNT and
MinRkNNT search algorithm to find the new “optimal”
routes. Finally, we compared the RkNNT sets of the original
routes against the new routes.

Parameters. We discovered two key parameters that
affect the performance of MaxRkNNT: (1) the coverage
degree of a bus route - denoted by cðseÞ and quantified as
the euclidean distance between the start and end points of a
query Q. (2) t

cðseÞ, which is the ratio of the travel distance

over the straight-line distance from origin to destination of
Q. The choices of these parameters are from the distribution
of all real bus routes, as shown in Fig. 17.

Pre-Computation. Table 7 shows the time spent on pre-
computation, which is composed of RkNNT search and all-
pair shortest distance computations; the bold numbers are
the results for synthetic dataset. The pre-computation con-
sists of of two steps: running the RkNNT query for every
vertex, and the shortest distance route search, as shown in
Algorithm 5. All-pair shortest distance computation costs

about 4 minutes for both datasets, and the RkNNT search
of all vertices in G costs less than 5 minutes when k ¼ 10.
For the synthetic dataset, the time spent on pre-computation
is about 12 minutes when k ¼ 10.

Effect of cðseÞ. Fig. 18 shows that the time spent on the
search task increases when the distance between the origin
and destination cðseÞ increases. This is because more verti-
ces in the graph need to be scanned between the origin and
destination. For Bruteforce, the reasons are twofold: (1)
It returns more candidate routes for RkNNT; (2) The candi-
date routes are longer when cðseÞ is long, so more time
has to be spent for every RkNNT query. In contrast, for
the remaining three methods, since we have pre-computed
the RkNNT set for every vertex, the running time comes
from the search over G. Pre-Max has the best performance
due to the bound checking during the spreading of partial
routes.

Effect of t
cðseÞ. To generate the query, we choose a subset

of queries with a fixed cðseÞ as the default value shown in
Table 4 and alter t in the experiment. Fig. 19 shows that
increasing t

cðseÞ leads to increased running time, which can

also be ascribed to the more candidates between the origin
and destination.

Real Queries. We took each route in DR as a query to
perform a MaxRkNNT search to see whether we can find
a better route which has a larger RkNNT set while main-
taining an acceptable travel distance threshold. Each query
is generated using the start and end bus stop, and the travel
distance for each route. Fig. 20 shows the running time
distribution for the real queries, most queries in the LA data
can be answered in less than a second.

In Fig. 21, we show four kinds of routes which share the
same start and end locations: 1) the original bus route
passes through Manhattan, 2) the shortest distance route,

Fig. 17. Frequency histogram of cðseÞ, I and jRj in LA (left) and NYC
(right).

TABLE 7
Running Time(s) for Pre-Computation When k ¼ 1; 5; 10

k LA NYC

1 5 10 1 5 10

RkNNT 80.5 153.2 230.8 140.4 202.1 253.5
201.7 545.8 748.1

Shortest 191.3 251.9

Fig. 18. Effect on running time as cðseÞ increases.

Fig. 19. Effect on running time with the increase of t
cðseÞ.

Fig. 20. Distribution of running time ofMaxRkNNT on real route query.
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3) the MaxRkNNT route which attracts the most passen-
gers, 4) the MinRkNNT route which attracts the fewest pas-
sengers. The right table shows the search time, number of
passengers, travel distance, and number of stops. We find:
(1) the original route and the MaxRkNNT route are almost
the same (in particular, MaxRkNNT finds a route which
just is 10 meters longer but can attract 129 extra passengers),
which means that the existing bus route is almost optimal
between the start and end stops. (2) If a driver wants to save
time, the least crowded route can be selected as provided
byMinRkNNT; if the car should be shared to increase reve-
nue, the route found byMaxRkNNT is better.

8 CONCLUSION

In this paper, we proposed and studied the RkNNT query,
which can be used directly to support capacity estimation in
bus networks. First, we proposed a filter-refine processing
framework, and an optimization to increase the filtering space
that improves pruning efficiency. Thenwe employedRkNNT
to solve the bus route planning problem. In a bus network,
given a start and end bus stop, we can find an optimal route
which attracts the most passengers for a given travel distance
threshold. To the best of our knowledge, this is the first work
studying reverse k nearest neighbors in trajectories, and
our solution supports dynamically changing transition data
while providing up-to-date answers efficiently. RkNNT can
be used in other related applications such as route planning
for emergency vehicles, and traffic evacuation.
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