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ABSTRACT
�is paper studies the location-based web search and aims to build
a uni�ed processing paradigm for two purposes: (1) e�ciently sup-
port each of the various types of location-based queries (kNN query,
top-k spatial-textual query, etc.) on two major forms of geo-tagged
data, i.e., spatial point data such as geo-tagged web documents, and
spatial trajectory data such as a sequence of geo-tagged travel blogs
by a user; (2) support interactive search to provide quick response
for a query session, within which a user usually keeps re�ning her
query by either issuing di�erent query types or specifying di�erent
constraints (e.g., adding a keyword and/or location, changing the
choice of k , etc.) until she �nds the desired results. To achieve
this goal, we �rst propose a general Top-k query called Monotone
Aggregate Spatial Keyword query-MASK, which is able to cover
most types of location-based web search. Next, we develop a uni-
�ed indexing (called Textual-Grid-Point Inverted Index) and query
processing paradigm (called ETAIL Algorithm) to answer a single
MASK query e�ciently. Furthermore, we extend ETAIL to provide
interactive search for multiple queries within one query session,
by exploiting the commonality of textual and/or spatial dimension
among queries. Last, extensive experiments on four real datasets
verify the robustness and e�ciency of our approach.
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1 INTRODUCTION
�e widespread use of mobile devices with GPS enables a parade
of geo-tagged web data being continually generated. Such data
usually behaves in two forms: (1) a single point such as a geo-
tagged document in Trip-advisor1, (2) a trajectory which is a set
or sequence of geo-tagged documents, such as a user’s check-in
records from Twi�er2 [42], a sequence of user’s travel blogs3, etc.

1h�ps://www.tripadvisor.com/
2h�ps://www.twi�er.com/
3h�ps://www.travelblog.org/
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Numerous types of location-based web search queries [4, 8–12, 22,
23, 30, 35–37, 40, 41, 43, 47] have been proposed to retrieve such geo-
tagged web data, to further support various location-aware services
such as site selection, trip planning, etc, as shown in Example 1.1.

“Los Angeles travel guide” (KS)

Trip planning Visiting LA

“Suggested routes across Hollywood” (kBCT)

“Suggested routes for dining” (TkSTT)

“Nearby POIs” (kNN)

“Nearest restaurant” (TkSK)

“Suggest a place to meet with friend” (ANN)

“Suggest a café to dine with friend” (ATNN)

Figure 1: Exemplar queries conducted before & during a trip
Example 1.1. Grace is planning to visit Los Angeles, she starts

her exploration by a pure keyword query (KS) [5] on the web to
acquire initial knowledge of the famous a�ractions. �en she might
issue a k-Best-Connected-Trajectory (kBCT) query [9] to �nd the
top-k best routes (from existing travel blogs) which covers the
a�ractions in her wish-list. Furthermore, with the Top-k Spatial-
Textual Trajectory (TkSTT) query [30, 35, 42], she can add more
keyword constraints such as preferred activities to do in the trip,
to �nd a more personalized route to follow. A�er arriving in LA,
Grace wants to explore the POIs around her hotel. Initially, she
may do a k-Nearest Neighbor (kNN) query [19] search as she does
not �gure out which keywords to use for searching. A�er ge�ing
the results, she may use some keywords to add more constraints
to further �lter unrelated objects. It is known as Top-k Spatial
Keyword (TkSK) query [12, 40]. Besides, she may want to �nd
a place to meet her friends a�ending WSDM, which is known as
Aggregate Nearest Neighbour (ANN) query [24] and Aggregate
Textual Nearest Neighbour (ATNN) query [37].

It is desired to support the above queries (in Figure 1) related
to location-based web data in one map-based search interface, say
Google Maps (although it only supports keyword query so far).
In a query session, a user may issue several queries of the same
type (with di�erent se�ings on textual or spatial dimension), or
even di�erent types of queries, along her exploration of the un-
known data, until �nding the desired objects for di�erent purposes.
�erefore, it is critical to provide quick response to various queries
(probably issued in one query session), to achieve an interactive
search experience [21, 43]. A straightforward approach is to adopt
the above standalone work to handle each type of query; however,
it is expensive in both storage and computation cost, thus failing
to provide interactive search. Furthermore, an extensive literature
study shows that, no existing work can support any of the above
queries over both point data and trajectory data simultaneously.

�erefore, the �rst goal is to build a uni�ed index and query
processing paradigm to answer various types of location-based
search queries on both spatial point data and spatial trajectory data.
�e second goal is to support interactive search to provide quick
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response for a query session consisting of di�erent types or se�ings
of query. We made the following contributions to achieve them:
• By studying those most common top-k queries over geo-tagged

objects in academia comprehensively (Section 2), we propose the
Monotone Aggregate Spatial Keyword query-MASK which can
represent most of them (Section 3).

• We develop an e�cient search framework for MASK, including
an index called TGP composed by grid-index and inverted lists
tightly, and an e�cient search paradigm-ETAIL (Section 4).

• We highlight three common re�nements of the queries over geo-
tagged web data, and propose an optimized RETAIL by reusing
scanned objects, to achieve an interactive search experience
(Section 5).
• We conduct extensive experimental evaluations over four real

datasets to verify the e�ciency and generality of our approach
(Section 6).

2 PRELIMINARIES & RELATEDWORK
Table 1: An overview of existing top-k queries over geo-
tagged data. �e column for “Index” only lists the represen-
tative index structure.

�ery Input Output Similarity Index
KS [5, 13, 16] keywords points TF-IDF Inverted list
kNN [3, 19, 29] point points Euclidean R-tree

TkSK [11, 22, 40, 41] point,
keywords points Aggregate IR-tree

ANN [24, 38, 48] points points Aggregate R-tree

ATNN [23, 37] points,
keywords points Aggregate IR-tree

kBCT [9, 25, 34] points trajectories Aggregate R-tree

TkSTT [30, 35, 42] points,
keywords trajectories Aggregate Grid index,

Inverted list

2.1 Single-point Search

Spatial-only�ery. A spatial-only query usually behaves in two
forms: (1) a k-nearest neighbours (kNN) query, where given a spatial
point p representing user’s current location and a k , �nding the
kNN of p in the data repository; (2) a range query which �nds all
objects falling within a region (which could be rectangle or circle).
For example, a kNN query can be “�nd the 3 nearest ATMs around
my hotel”, and a range query can be �nding all the ATMs in city.
General Methodology: R-tree [19] is one of the most popular index
structures for e�cient spatial searching. By judging whether the
minimum distance between the query and the node of index is
bigger than the distance to the current k-th result, or whether the
node intersects with the query range, a batch of objects can be
skipped directly.

Keyword-only�ery. �e keyword-only query is also an impor-
tant entry to explore geo-tagged data. For example, people might
want to search nearby restaurants by keywords “tacos restaurant”
(in Google Maps) when they go to Los Angeles. It usually behaves in
two forms: (1) a textual boolean query (conjunctive search), where
the objects that contain all query keywords are returned as results.
However, a textual boolean query is too strict when a query has
multiple keywords. (2) a Top-k Keyword query (disjunctive search)
which returns the top-k objects ranked by the similarities of objects
w.r.t. the query. Here, we focus on the top-k keyword query.

General Methodology: Term-at-a-time (TAAT) and Document-at-a-
time (DAAT) are two main types of search paradigm [5] in the area
of information retrieval. �e inverted list on each term can be used
to �lter those objects that do not contain any keyword of the query.
In term of the similarity metric, TF-IDF [27] and Language Model
[31] are two widely adopted ones.

Spatial-keyword�ery.�e spatial-keyword query evolves from
the spatial-only query by having a further constraint on textual
dimension, and can be further divided into three general groups [7]:
1) Boolean Range�ery [20], e.g., �nding all theMexican restaurants
in the CBD; 2) Boolean kNN �ery [14], e.g., �nding 3 nearest
Mexican restaurants around my hotel; 3) Top-k Spatial-keyword
�ery [12, 40], e.g., �nding 3 restaurants which could serve lobster,
pizza or steak and are also close to my hotel.
GeneralMethodology:Mostwork [7, 40] proposed to use the inverted
lists on top of an existing tree-structured index (say R-tree) to deal
with spatial-keyword search. �e inverted list can be as simple as
indicating the existence of a particular keyword to serve the boolean
part of the query, or as complex as incorporating the weight of the
keywords to serve the similarity computation for Top-k spatial-
keyword query.
2.2 Multiple-point Search

Search over Points. Given a set of points, Papadias et al. [24]
searched k Nearest Neighbour points in term of the aggregate dis-
tance of each neighbor to query points, and it is called Aggregate
Nearest Neighbour (ANN) search. Li et al. [23], Yao et al. [37] pro-
posed Aggregate Textual Nearest Neighbour (ATNN) search based on
ANN by adding keywords in query. �e similarity is an aggregation
of the spatial proximity to the query locations and textual similarity
to the query keywords.

Search over Trajectories. Given a set of points, Chen et al. [9]
proposed a k Best Connected Trajectories (kBCT) query, in order
to �nd the trajectories that are among the k-closest ones to the
query points. �e distance between trajectory and query is an ag-
gregation of the shortest distance from each point (in trajectory T )
to the points in query. Subsequently, Top-k Spatial-Textual Trajec-
tory search evolves from the spatial-only search by incorporating
keywords into the query and its search method [30, 35, 42]. In
particular, a keyword could be associated with either a designated
query point like [35] for a �ne-grained search, or associated with
the whole trajectory for a coarse-grained search like [30, 42].
2.3 �ery Re�nement
�ery re�nement originates from web search, where users have
to reformulate their queries 40% to 52% of the time in order to
�nd their desired results [32]. It can be caused by many di�erent
reasons: there do not exist matching results in the data repository
that matches users’ search intentions [18, 21, 39], or there is a
mismatch between users’ search intentions and their formulated
queries (due to spelling errors, limited domain knowledge, etc.) [45].
For example, Grace is searching “3 nearest restaurants”, and gets 3
results which contain Mexican food that Grace likes a lot, so she
further changes the query as “3 nearest Mexican restaurants”.

�ery re�nement applies to not only textual search, but also
spatial search. One type of query re�nement is the moving object
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query [36], where the query location keeps moving. A common
methodology is to propose the concept of “safe zone”, within which
the up-to-date top-k results remain unchanged while it triggers
a re-computation when it walks out of the safe zone. For spatial
point data, the most recent work is to execute the re�nement on
both spatial dimension (in term of relaxing the search range) and
textual dimension (via approximate string matching methods) [45].

2.4 Summary
To summarize, we observe that none of existing work can handle
the single point search and multiple-point search over the point
data and the trajectory data at the same time. Such limitation
behaves in two-folds: a uni�ed index to support most common
query operators is missing; a uni�ed query processing approach to
handle various types of queries is missing. Moreover, it remains an
open problem on how to support an interactive search where users
may change the type of query or the parameters (like k , keywords)
for a certain type of query.

3 PROBLEM DEFINITION
In this section, we formally de�ne the Top-k Monotone Aggregate
Spatial Keyword�ery, which is a generalized form of most existing
spatial-only and spatial-textual queries (over both the point data
and trajectory data) as described in Section 2.

De�nition 3.1. (Point) In a data repository D, a point p = (ρ,ψ )
is a pair consisting of the location ρ and a set of associated terms
ψ = (t1, t2, . . . , ti ) describing ρ and/or users’ activities at ρ.

De�nition 3.2. (Trajectory) A trajectory T of length l is in the
form of {p1,p2, . . . ,pl }, where each pi is a point.

As trajectory [30, 35] and point [7] are two main forms of geo-
tagged data, in this paper we use object o uniformly to represent
trajectory and point.

De�nition 3.3. (�ery) A query Q is a set of points in the form
of {q1,q2,. . . ,qm}. Speci�cally, Qs = {ρ1, ρ2, . . . , ρm } is the query
location set, and Qt =

⋃m
i=1ψi is the query keyword set, i.e.,m =

|Qs | and n = |Qt |,m and n cannot be 0 at the same time.
By reviewing existing widely used similarity models on Top-k

search [5, 9, 19, 22, 23, 27, 30, 35–37, 40, 41, 43], we can generalize
them as the below de�nition:

De�nition 3.4. (Monotone Aggregate Similarity) �e similar-
ity of an object o w.r.t. a query Q is de�ned in the below equation:

Ŝ(Q,o) = α ·
∑
ρ ∈Qs

SProx(ρ,o.ρ) + (1 − α) ·
∑
ψ ∈Qt

TRel(ψ ,o.ψ ) (1)

where SProx(ρ,o.ρ) is the spatial proximity between o.ρ and ρ,
TRel(ρ,o.ψ ) is the textual relevance between ψ and o.ψ , and α ∈
[0, 1] is a query preference parameter that makes it possible to
balance the spatial proximity and textual relevance, and it is always
set as 0.5.

Spatial proximity. SProx(ρ,o.ρ) is de�ned as the normalized min-
imum Euclidean distance from ρ to o.ρ, computed as:

SProx(ρ,o.ρ) = 1 −
min

pj ∈o .ρ
dist(ρ,pj )

distmax
(2)

where dist(ρ,pj ) is the Euclidean distance between pj and q, and
distmax is the maximum distance between any two objects in D.

Besides the Euclidean distance, the distance function can also be
the road network distance [38]. In this paper, we focus on the more
widely used Euclidean distance function.
Textual relevance. For TRel(ψ ,o.ψ ), similar to [5, 9, 22, 23, 30, 35–
37, 40, 41, 43], we use a scoring model such as TF-IDF which is also
a monotone aggregate function.

TRel(ψ ,o.ψ ) =
∑

t ∈ψ∩o .ψ

w(t ,o.ψ ) (3)

wherew(t ,o.ψ ) is a normalized similarity weight of keyword t in
o.ψ , and the maximum value of weight is 1. In our experiment, we
compute the weight of each term in an object by their occurrence
numbers over the number of all keywords in the object. Beside, our
framework can bemodi�ed to �t other textual similaritymodels that
can be answered e�ciently using inverted list, such as Language
Model [31] and BM25 [26], we leave these details for future work.

Taking the most recent spatial-textual trajectory search
work [35] for example, it combines the textual and spatial sim-
ilarity at point-to-point level. It is actually also an instance of
Equation 1, because for each point in the query, only the data point
o that maximizes the similarity is chosen to contribute to the overall
similarity Ŝ(Q,o) in Equation 1.

Figure 2: Di�erent types with respect to di�erent combina-
tion of l ,m and n. “∗” means the special case of the query.

De�nition 3.5. (Top-k Monotone Aggregate Spatial Key-
word �ery) Given an object database D = {o1, . . . ,o |D |} and
query Q , a Monotone Aggregate Spatial Keyword (MASK) query
retrieves a set R ⊆ D with k objects such that: ∀r ∈ R,∀r ′ ∈
D − R, Ŝ(Q, r ) > Ŝ(Q, r

′

).

We present how most representative spatial-only and spatial-
textual queries [9, 19, 23, 24, 28, 30, 35, 37, 40] behave as a speci�c
form of our proposedMASK query in Figure 2. For example, when
l = 1, m = 1 and n = 0, it becomes a spatial-only kNN query
over point data [19]; when l > 1,m > 1 and n > 0, it becomes a
spatial-textual kNN query over trajectory data [35].

4 A UNIFIED PROCESSING PARADIGM
4.1 Preliminary

�reshold Algorithm. In order to avoid scanning every object o ∈
D to get top-k results, the threshold algorithm (TA) of Fagin et al.
[17] is used as a �ltering method when accessing the ranked lists
(sorted by the termweight of objects). �e �lteringmethod proceeds
in three steps: 1) for each query term, its ranking list is scanned
sequentially so that objects with high similarity scores are scanned
�rst; 2) compute the similarity of scanned objects and update the
top-k result heap; 3) check whether the k-th result has a higher
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score than the upper bound of the unscanned objects (Spo�ed area),
terminate if yes, otherwise jump to Step 1. Speci�cally, the upper
bound is the sum of score in the current rows of each inverted list.
It is worth noting that the ranked list can be divided into blocks to
reduce I/Os, which is known as the block-based early termination
[15, 16].

While in principle a similar idea can be adopted to suit search
purpose, using the algorithm of Fagin et al. directly does not work
because the top-k list for every point in the query is not known a
priori. For example, when the query in Figure 1 comes, we can get
the inverted lists for “Restaurant” and “Mexican” easily, but cannot
get the inverted lists for locations. Hence, how to build a spatial
inverted list for a query location is crucial to extend the threshold
algorithm to handle our MASK query.

4.2 Index Structure-TGP
Our index is called as the Textual-Grid-Point Inverted Lists (TGP)
index. �e index structure consists of three components.
• Textual Inverted List (TIL). �e key is a unique keyword in the

database D, the value is the list which stores the ids of all points
that contain this keyword in D. Similar to the impact-sorted
indexes [33], it sorts the lists by a descending order of term
weight, and divides the lists into blocks of �xed size. We can
determine how many blocks are loaded one time based on the
number of points. Let I denote the inverted list ofψ , each block
in I has a maximum weight Î↑(ψ , it) and a minimum weight
Î↓(ψ , it), where the it is the iteration number of loading, and
every list has itmax blocks.

• Grid Inverted Lists (GIL). �e whole space is divided into grids
of equal size, and each leaf cell is assigned a unique id using the
z-curve cross-coding [40] (see Figure 3). An incremental round
expansion method [35] is adopted to access the points around
the query location, from near to distant. Similar to the bounds of
each block inTIL, the upper bound of the similarity of unscanned
points (along the spatial inverted list) for ρ a�er it iterations, is
denoted by Ĝ↑(ρ, it), where G is the GIL for ρ.

Within each grid cell, we create its associated TIL, so we
only need to access the objects which have at least one common
textual keyword with the query.

xq

yq q

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

1st Loading

2nd Loading

3rd Loading

4th Loading

5th Loading

6th Loading

3 2

010011

001101

13

xq yq

(a) Grid Inverted List (b) Cross-coding

Figure 3: (a) Incremental expansion around the query loca-
tion within a Grid-index; (b) Labelling a grid cell by Z-curve
cross-coding, i.e., picking bit from each binary code succes-
sively to form a new code, e.g., bold numbers are from xq .

• Point Inverted List (PIL). Recall Section 2 all existing work such
as [30, 35, 42] on top-k trajectory search model a trajectory as a
set (or sequence) of points, and their proposed query processing

method is built at point granularity. �erefore, we create an in-
verted index to store a mapping from a point to its corresponding
trajectories.

Compressible Index. Our index is composed by inverted lists,
each list contains equal number of blocks, and each block stores
an array of object ids. �ereby, an array A can be compressed
into an array B with fewer integers using the integer compression
technology [1]. With the corresponding e�cient decompression
that converts B to A, the query can be conducted without much
change, and the performance will not be a�ected.

4.3 Operators over TGP
By having TGP as the index for dataset D, in order to �lter objects
e�ectively, we access candidate objects in a batch-wise way from
the near to the distant. To access the points and their corresponding
objects, we de�ne three main operators.

TextualIterator. Given a query keyword ψ , TextualIterator is in-
voked to get the it-th block from the beginning of textual inverted
list TIL, as well as the upper bound of the similarity from the query
to the unseen objects.

SpatialIterator. Given a query location ρ, in the it-th iteration to
access the candidate points, SpatialIterator is invoked to get a set
of grid-cells in the following way: 1) get the grid label xq , yq on
x and y axis of the query location; 2) compute the x and y value
of grid-cells which are going to be scanned; 3) return the z-curve
label by cross-coding as described in Figure 3(b); 4) �nd those cells
using the labels.

CoveredObjects. Based on the PIL, given a set of points, Covere-
dObjects returns all the objects that cover those points. It mainly
works for the queries over trajectory data, and can be omi�ed when
dealing with the queries over point data as the object is point itself.

�e three operators above can help us achieve the �rst step of
�reshold Algorithm in Section 4.1, i.e., scanning the inverted list
sequentially. Based on the scanned objects, we will describe how
to �lter the unseen objects and return top-k result of Step 2 and 3.

4.4 Early Termination & Abandoning over
Inverted Lists

As mentioned in our index structure, we expand the search of new
candidates from the near to the distant in an incremental way. �ere
are two main challenges: (1) how to stop the expansion as early as
possible to reduce the search space; (2) how to e�ciently compute
the similarity between a candidate and the query. Since we do not
store the whole object in the inverted list of a certain term, more
random accesses are needed to compute the real similarity between
the object and the query. To this end, we propose early termination
and early abandoning on top of our TGP to address challenge 1 and
2 respectively. In particular, we propose an algorithm called Early
Termination & Abandoning over Inverted Lists-ETAIL, as shown
in Algorithm 1.

Early Termination. A�er several iterations of scanning candi-
dates R(qi ), we can stop expansion based on whether the best of
unseen objects can beat all the current top-k result R. More de-
tails can be found from Lines 1 to 11. Line 11 shows the condition
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for early termination. �e bound computation can be found in
Section 4.4.1.

Early Abandoning. Before computing the real similarity, we can
estimate the upper bound of each candidate’s similarity (see Sec-
tion 4.4.2 for details on upper bound estimation), then determine
whether it is bigger than the current R. If so, we will compute the
real similarity by accessing the details of each candidate; other-
wise, we skip this candidate. Lines 12 to 22 show the details. �e
terminating condition can be found in the gray area before Line 22.

Algorithm 1: ETAIL Algorithm
Input: Object database D, query Q , k
Output: Top-k result set R

1 it ← 1; R ← �; Dc ← �;
2 while |Dc | < |D | do
3 foreach qi ∈ Q do
4 R (qi ) ← TextualIterator (qi , it − 1, it,T IL);
5 R (qi ) ← R (qi ) ∪ SpatialIterator (qi , it − 1, it,GIL);
6 it ← it + 1;

7 Dc ← Dc ∪
|Q |⋃
i=1

CoveredObjects (R (qi ), PIL);

8 if |Dc | > k then
9 Compute Ŝ↑(Q,D − Dc) (by Equation 4);

10 Compute Ŝ↓ (Q,R) (by Equation 5);

11 if Ŝ↓ (Q,R) > Ŝ↑(Q,D − Dc) then
12 seen UB [] =

⋃
o∈Dc

Ŝ↑ (Q,o) ( Equation 7);

13 Sort Dc by seen UB[] in decreasing order;
14 foreach oi ∈ Dc do
15 Compute Ŝ(Q,oi ) (Equation 1);
16 if |R | < k then
17 Insert oi in R and update the order;
18 else
19 if Ŝ(Q,oi ) > Ŝ(Q,R[k]) then
20 Replace R[k] with oi ;
21 if Ŝ(Q,R[k]) > seen UB[i + 1] then
22 break;
23 return R;

4.4.1 Bounds for Early Termination. Here we discuss how to
achieve an early termination without scanning the whole database
D. Based on our lower bound similarity of the k-th object in the
result heap (chosen from the scanned objects Dc ). �e upper bound
of unscanned objects in D − Dc can be computed as:

Ŝ↑(Q,D −Dc ) = α ·
∑
ρi ∈Qs

Ĝ↑(ρi , it)+ (1−α) ·
∑

ψj ∈Qt

Î↑(ψj , it) (4)

where Ĝ↑(ρi , it) and Î↑(ψj , it) are the upper bound of unscanned
spatial and textual inverted lists for ψ and ρ a�er it iterations,
then the similarity of worst one in the current top-k result can be
computed as:

Ŝ↓(Q,R) = min
o∈R

Ŝ↓(Q,o) (5)

4.4.2 Bounds for Early Abandoning. For each scanned object in
Dc , we will compute its upper bound similarity without randomly
accessing the missing part, i.e., using less computation to estimate
the best case. If the upper bound is smaller than the k-th best result,
we will discard it; otherwise, we need to compute the real similarity
by accessing the missing part and further check whether it can
replace the current k-th result. We choose to sort the upper bounds
set seen UB [] in line 13 of Algorithm 1, as it enables potential
candidates to be scanned earlier, if the current result set is be�er
than the (i + 1)-th candidate, and all the following candidates are
worse with a smaller upper bound, so we can break in line 22.

Particularly, the lower bound for object o can be computed as:

Ŝ↓(Q,o) = α ·
∑
ρ ∈Qs

SProx↓it(ρ,o.ρ)+(1−α)·
∑
ψ ∈Qt

TRel
↓
it (ψ ,o.ψ ) (6)

where SProx↓it(ρi ,o.ρ) = 0 if o is not scanned yet in the inverted
lists of ρi , otherwise SProx↓it(ρi ,o.ρ) = SProx(ρi ,o.ρ).

Since the similarities of some terms have not been computed yet,
we need to �ll the gaps using the maximum similarity of each term.
�en the upper bound of o can be computed as:

Ŝ↑(Q,o) = α ·
∑
ρ ∈Qs

SProx↑it(ρ,o.ρ)+(1−α)·
∑
ψ ∈Qt

TRel
↑
it (ψ ,o.ψ ) (7)

where SProx↑it(ρi ,o.ρ) = Ĝ
↑(ρi , it) if o is not scanned yet in the

inverted lists of ρi , otherwise SProx↑it(ρi ,o.ρ) = SProx(ρi ,o.ρ).
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Figure 4: �e loaded index structure for ATNN query Q =
{A,B, “Co�ee” , “Pizza” , 3}.

Example 4.1. Here we use an example to illustrate how we
achieve early termination and abandoning as shown in Figure 4.
Figure 4 shows an ATNN [37] search. Grace is at location A, and
wants to meet with friend who is at location B.�ey choose “Co�ee”
and “Pizza” as preferences for restaurants to meet. �e four partial
inverted lists are returned by TGP. �e two numbers in the upper
corners of each block indicate the range of similarities among all
objects in this block. �e number below each object is the similarity
of this object w.r.t. the query.
Early Termination: In the �rst iteration, we get objects
{o1,o2,o4,o5,o6,o7,o9}. Currently, Ŝ↑(D − Dc) = 0.6 + 0.6 +
0.7 + 0.5 = 2.4. For o1, the lower bound 0.7 + 0.9 = 1.6 which
ranks 1 in the top-3 list, another two best are {o2 = 0.8,o7 =
0.7}, so the Ŝ↓ (Q,R) = 0.7 < 2.4. We keep loading more
points. Until that third iteration whose upper bound reduces to
Ŝ↑(D −Dc) = 0.2+ 0.2+ 0.2+ 0.3 = 0.9 , the lower bound of o1 are:
0.7+0.5+0.9+0.4 = 2.5, then top-3 are: {o1 : 2.5,o2 : 1.6,o5 : 1.3}.
Hence, Ŝ↓ (Q,R) = 1.3 > Ŝ↑(D − Dc) = 0.9, we terminate.
Early Abandoning: A�er termination, we have 9 candidate ob-
jects: o1 − o9. To check whether each of them can be the result,
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we compare it with the current top-3 results. For example, for the
object o8 in the loaded inverted list of location B, its upper bound
Ŝ↑(Q,o8) = 0.3+ 0.2+ 0.2+ 0.3 = 1 < Ŝ↓ (Q,R) = 1.3, thus we can
skip o8 without further computing its real similarity by accessing
the rest unloaded part in the inverted list.

4.5 Discussion on Supporting Boolean�eries
Besides top-k queries with monotone aggregate similarity function,
our index TGP can also support three kinds of boolean queries
which do not have the constraint of k . 1) For a range query, we
can �nd all the grid cells that locate inside or intersect with query
range, then access the objects inside the cells and re�ne it. 2) For a
textual boolean query which �nds the objects that contain all the
keywords of the query, it will be easier as we can fetch the related
TIL and conduct join operation. 3) For a boolean range query [20]
that �nds all the objects that contain the query keywords and locate
in a query range, we can further access the node-level inverted list
in a grid cell a�er conducting the range query.

5 OPTIMIZATION FOR QUERY REFINEMENT
In this section, we would like to discuss how to optimize the per-
formance of processing continuous multiple queries from a user,
which have many overlaps among each other.

5.1 �ery Re�nement
De�nition 5.1. (�ery session)A query sessionS which origins

from query Q is composed by a set of queries with continuous
re�nements on Q .

Generally, the re�nements are divided into following three types,
which can be combined with each other or itself to compose S.

De�nition 5.2. (Re�nement on Keywords) A query Q is re-
�ned to query Q ′ when a set of keywords Qt (∆) are added into or

deleted from the query, denoted as Q
Qt (∆)
−−−−−→ Q

′ .

De�nition 5.3. (Re�nement on Points) A query Q is re�ned
to query Q ′ when a set of points Qs (∆) are added into or deleted

from the query, denoted as Q
Qs (∆)
−−−−−→ Q

′ .

De�nition 5.4. (Re�nement on k) A queryQ is re�ned to query
Q
′ when the user changes the expected number of returned results,

denoted as Q
k(∆)
−−−−→ Q

′ .

Figure 5 shows an example for each of the three types of re�ne-
ments within S. For any two adjacent queries Q and Q ′, there is a
high chance that many objects can be candidates for bothQ andQ′
as they share query locations or (partial) keywords. �erefore, in-
stead of simply invoking Algorithm 1 twice to process two queries
independently, we propose to reuse those scanned objects of Q for
Q
′ , thereby save computation and IO costs.

5.2 Reusable Scanned Objects
To maintain the scanned objects ofQ , we add a new operator called
ReuseBlo�, whose job is tomaintain the intermediate inverted lists
of query locations and query keywords. For the re�ned query Q ′ ,
we can �nd the shared keywordsQ ′t ∩Qt and locationsQ

′

s ∩Qs and

0 10

(c) k refinement

k
Coffee, Pizza

Coffee, Pizza, Steak

Coffee

Coffee, Steak

(b) Keyword refinement

3

(a) Point refinement

(i) (ii) (iii)

A
B

A'

B
A A

BC

Figure 5: �ree kinds of query re�nements over geo-tagged
data: a) re�nement on points, some location(s) in the query
i) move, ii) are deleted or iii) are added; b) keywords in the
query are i) added, ii) deleted or iii) replaced; c)k is increased
or decreased.

reuse their inverted lists without reloading it. Besides the scanned
objects of the Qt (∆), we also record the number of iterations to
get top-k result of Q , as we may need to conduct more iterations
to load more new candidates. We denote the scanned objects and
number of iterations as C(Q).Dc and C(Q).it respectively. For the
new query keywords and locations Qt (∆) and Qs (∆), we also need
to �ll the gaps of inverted lists before conducting new expansions
for more iterations. We incorporate the optimization above into
ETAIL named Reusable ETAIL (RETAIL), which supports all three
kinds of re�nements. Details can be found in Algorithm 2. Next we
give a running example of Algorithm 2.

Algorithm 2: RETAIL Algorithm
Input: Trajectory database D, query Q ′ , k , maintained data

of former query Q : C(Q)
Output: Top-k result set R

1 Qt (∆) ← Q
′

t −Q
′

t ∩Qt , Qs (∆) ← Q
′

s −Q
′

s ∩Qs ;
2 it ← C(Q).it , R ← �, Dc ← C(Q).Dc ;
3 while |Dc | < |D | do
4 foreachψ ∈ Qt (∆) do
5 Rit (ψ ) ← TextualIterator (ψ , 0, it,T IL);
6 Dc ← Dc ∪ CoveredObjects (Rit (ψ ), PIL);
7 foreach ρ ∈ Qs (∆) do
8 Rit (ρ) ← SpatialIterator (ρ, 0, it,GIL);
9 Dc ← Dc ∪ CoveredObjects (Rit (ρ), PIL);

10 Same to Line 8 to 23 of Algorithm 1;
11 it ← it + 1;

Example 5.5. Figure 6 shows two adjacent queries, Q and Q ′ , for
the working example of Figure 4. Q takes three iterations to �nd
the top-3 results. Speci�cally, it has four inverted lists. When a new
query Q

′ comes, since it shares two keywords and one location
with Q , we can reuse the inverted lists directly, to avoid loading
inverted lists again. As Q ′ has a new keyword “Steak” and a new
location A

′ , we will conduct 3 iterations separately based on it = 3
in Q to �ll the gap of inverted lists (see the black spo�ed area).
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B

Coffee

Pizza

A’
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Q=(A, B, Coffee, Pizza, 3) Q'=(A', B, Coffee, Pizza, Steak, 5)

it=3 it=4

Figure 6: Making loaded objects ofQ reusable for an adjacent
query Q

′

, the blocks in the red box are reused for Q
′

.
Table 2: Four datasets for experiments.

LA [2] Twi�er [6] GeoLife [46] T-drive [44]
#Points 215, 614 2, 267, 789 19, 476, 949 17, 511, 809

#Keywords 14.67 6.92 N/A N/A
#Trajectories 31, 557 N/A 16, 438 10, 290

Range Los Angeles California
& Nevada Beijing Beijing

Table 3: Parameter setting.
Parameter Value

|Q |: Number of points in Q 1,2,3,4,5,6,7,8,9,10
|q.ψ |: Number of keywords in query point q 3,4,5,6,7,8,9,10

k : Number of results 10,20,30,40,50,60
α : Similarity weight in Equation 1 0.5

itmax : Number of blocks in TIL and GIL 150

6 EXPERIMENTS
6.1 Settings
Datasets. We take one point dataset and three trajectory datasets.
Table 2 shows the statistics of these 4 datasets. Note that LA and
Twi�er are two check-in datasets from Foursquare and Twi�er,
while LA can be used as a trajectory dataset by linking multi-
ple check-in points from the same user. GeoLife and T-drive are
two spatial-only trajectory datasets from Beijing, which record the
movements of people and taxi respectively, and have much higher
sampling rate than the check-in datasets, they are mainly used to
test the scalability of our algorithms for their huge amounts.

�ery Generation. For each dataset, we generate a query pool
randomly according to the range and vocabulary of each dataset.
Each query pool contains 1, 000 lines and each line is a full query
with 10 points and 10 keywords. To generate a query, we can select
a full query from the pool �rst. �en, we reformulate it by deleting
a few of last points and keywords according to the se�ing of param-
eters |Q | and |q.ψ | in each running. Details about the parameter
se�ing of the query can be found in Table 3, where the default
values are underlined. Moreover, all the queries reformulated from
a same full query can compose a query session S, then we can also
verify our RETAIL proposed in Section 5.

Evaluation Metrics. We explored the running time of all ap-
proaches in Section 6.2 and the footprint of their index structures in
Section 6.2.4. All experimental results are averaged by running all
1, 000 queries. All algorithms are implemented in Java, and run on
a PC with an Intel(R) Core(TM) i7-2630QM CPU (8 CPUs) and 8GB
RAM & 480GB Kingstom SSD using Windows 10, and our index
TGP resides in the main memory.
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Figure 7: Comparison with [19] by increasing k.

6.2 Performance Evaluation
Before presenting the experimental results on point and trajectory
data, we �rst show our main purposes and the observations.

6.2.1 Purposes and Overall Observations. We will verify:
1) whether our uni�ed algorithm ETAIL has comparable per-
formance with existing standalonemethods. As our index can
support multiple types of queries, we selected kNN [19], ATNN
[37] which also covers ANN [24], TkSK [12], kBCT [25] and TkSTT
[35] as 5 representative query types, and choose the state-of-the-art
(as cited) to compare with ETAIL, R-tree [19, 29] is chosen for kNN
as it is the test-of-the-time work. We observe that:

(1) Our TGP index can support all 5 types of queries e�ciently,
and it does not even occupy the largest space.

(2) For three query dependent parameters k , |q.ψ | and |Q |,
ETAIL can beat most state-of-the-art methods over all 4 datasets
with a smaller index size, and by more than one order of mag-
nitude at most, and 5 times in average.

(3) With the increase of k , |q.ψ | and |Q |, the running time increases
as more candidates need to be scanned.

2) whether our RETAIL can improve the performance of in-
teractive search. We add two more groups of experiments for a
same query session to verify RETAIL from di�erent perspectives.
Speci�cally, our algorithms are denoted asRETAIL-Addwhich starts
from a simplest query to full query (keep increasing k , number of
points or keywords), and RETAIL-Del which starts from a full query
to a simplest query (reducing from 10). We observe that:

(1) RETAIL outperforms previous standalone solutions by more
than two orders of magnitude at most.

(2) �e mutations in the lines of RETAIL in ATNN, TkSK and
TkSTT for query re�nement is because, too many candidates
are inherited from the former long query, so they need more
time to check these candidates.

6.2.2 Search over Points. We use LA and Twi�er to evaluate: 1)
k Nearest Neighbour (kNN) search by a point. 2) Top-k Spatial Key-
word (TkSK) search by a point with |q.ψ | keywords. 3) Aggregate
Textual Nearest Neighbour (ATNN) search by |Q | points with |q.ψ |
keywords in each query point. We omit the Keyword search (KS)
here as our framework is built on top of inverted index, which is
widely adopted to answer KS e�ciently.

E�ect of k on the kNN query. From Figure 7, we �nd: (1) �e
running time increases w.r.t. an increasing k . (2) Although R-tree
[19] beats ETAIL as we use Grid-index which should be slower than
R-tree, it cannot beat our RETAIL with optimization. We do not
include RETAIL-Del in the performance study for decreasing k , as
we can choose them from existing top-k results directly.
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Figure 8: Comparison with [12] by increasing k.
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Figure 9: Comparison with [12] by adding keywords.
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Figure 10: Comparison with [37] by increasing k.
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Figure 11: Comparison with [37] by adding points.

E�ect of k and |q.ψ | on the TkSK query. From Figures 8 and 9,
we �nd: (1) ETAIL is faster than IR-tree [12] when we process a
query without reusing the scanned objects. (2) When treating mul-
tiple queries as a query session, RETAIL is more e�cient than the
aggregated runtime of standalone approach over multiple queries.

E�ect of k , |Q | and |q.ψ | on the ATNN query. Figures 10, 11 and
12 show that the running time of all algorithms keep increasing
when three parameters rise.

6.2.3 Search over Trajectories. Datasets LA, GeoLife and T-drive
are used to evaluate 2 types of queries over trajectory data: 1) k
Best Connected Trajectories (kBCT) by |Q | points. 2) Top-k Spatial-
textual Trajectory (TkSTT) by |Q | points with |q.ψ | keywords.

E�ect of k and |Q | on the kBCT query. Figures 13 and 14 show
that only kBCT-GH [34] can compete with ETAIL, while it employs
R-tree which occupies more space than TGP (see Section 6.2.4).
Moreover, RETAIL is 2 orders of magnitude faster than [9].

E�ect of |Q | and |q.ψ | on the TkSTT query. Figure 15 shows: (1)
the running time of all algorithms keeps increasing when param-
eters rise, (2) RETAIL-Add is more e�cient than RETAIL-Del. We
omit the �gure of k here as it has a similar trend with other queries.

Statistics of Pruning. Table 4 shows the average number of
scanned candidates and pruned blocks in each list over all the

 
1

 
1
0

 
1
0
0
 
1
0
0
0
 
1
0
0
0
0

 3  4  5  6  7  8  9  10

C
P

U
 C

o
s
t 

(m
s
)

Number of Keywords

LA

ATNN

ETAIL

RETAIL-Add

RETAIL-Del

 
1

 
1
0

 
1
0
0
 
1
0
0
0
 
1
0
0
0
0

 3  4  5  6  7  8  9  10

C
P

U
 C

o
s
t 

(m
s
)

Number of Keywords

Twitter

ATNN

ETAIL

RETAIL-Add

RETAIL-Del

Figure 12: Comparison with [37] by increasing keywords.
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Figure 13: Comparison with [9, 25, 34] over GeoLife dataset.
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Figure 14: Comparison with [9, 25, 34] over T-drive dataset.
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Figure 15: Comparison with [35] by increasing |Q |, |q.ψ |.

candidates of the queries. We focus on two most complex queries:
TkSTT and ATNN. It shows that search over points terminates
much earlier than trajectories (highlighted in bold).
Table 4: Statistics on the pruning power of two kinds of
queries over LA dataset. (We adjust k = 10, 30, 60, |Q | = 1, 5, 10
and |q.ψ | = 3, 5, 10 to observe, respectively)

Parameter #Scanned Objects #Pruned Blocks

ATNN
k 8330 11450 17476 144 141 138
|Q | 7534 9545 13237 145 144 140
|q.ψ | 10004 12650 20235 143 140 135

TkSTT
k 2943 3721 4980 78 75 73
|Q | 2564 3167 4249 79 75 74
|q.ψ | 3254 4035 5132 77 74 72

6.2.4 Index Size. We employ the open-source libraries FastP-
FOR4 to compress the inverted lists, and Classmexer5 to measure
the footprint of our index. From the size of indices in Table 5, we
�nd: (1) Our TGP index manage to support all 5 types of queries
and even does not occupy the largest space. (2) If we sum up the
size of all indices for existing query types together for standalone
methods, it will be more than 10 times larger than our TGP in LA
and Twi�er datasets. (3) For spatial-only datasets like T-drive and
4h�ps://github.com/lemire/JavaFastPFOR
5h�ps://www.javamex.com/classmexer/
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GeoLife, TGP consumes at least 150MB less than other methods. (4)
Our index can be compressed slightly (highlighted in bold).

Table 5: Footprint of indices for di�erent queries.
�ery LA [2] Twi�er [6] GeoLife [46] T-drive [44]

TkSTT [35] 261MB 1.5GB N/A N/A
TkSK [12], ATNN [37] 455.7MB 14.7GB N/A N/A
kBCT [9], kNN [19] 32MB 158MB 1.3GB 1020MB

TGP 89/2MB 387/18MB 1228.8/71MB 810/52MB

7 CONCLUSION AND FUTUREWORK
In this paper, we studied how to support various query types
over geo-tagged data using a uni�ed indexing and query para-
digm. We �rst concluded the Monotone Aggregate Spatial Keyword
MASK which can represent most existing top-k queries. �en we
proposed an index structure called TGP, which is composed by grid
inverted list, textual inverted list and point inverted list. On top of
TGPwe proposed an Early Termination &Abandoningmethod over
Inverted List (ETAIL) Algorithm which can support multiple query
types e�ciently. Moreover, RETAIL reuses the scanned objects to
improve the performance of interactive searches. In the future, we
will further explore a uni�ed paradigm which can support more
similarity measures in spatial and textual dimensions.

8 ACKNOWLEDGMENT
�is work was supported by ARC DP170102726, DP180102050, and
National Natural Science Foundation of China (NSFC) 61728204,
91646204. Zhifeng Bao is supported by a Google Faculty Award.

REFERENCES
[1] Vo Ngoc Anh and Alistair Mo�at. 2005. Inverted index compression using

word-aligned binary codes. Information Retrieval 8, 1 (2005), 151–166.
[2] Jie Bao, Yu Zheng, and Mohamed F Mokbel. 2012. Location-based and preference-

aware recommendation using sparse geo-social networking data. In SIGSPATIAL.
199–208.

[3] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. �e R*-tree: an e�cient and robust access method for points and rectangles.
In SIGMOD. 322–331.

[4] Paul N. Benne�, Filip Radlinski, Ryen W. White, and Emine Yilmaz. 2011. Infer-
ring and using location metadata to personalize web search. In SIGIR. 135–144.

[5] Andrei Z Broder, David Carmel, Michael Herscovici, Aya So�er, and Jason Zien.
2003. E�cient query evaluation using a two-level retrieval process. In CIKM.
426–434.

[6] Lisi Chen, Gao Cong, Xin Cao, and Kian-lee Tan. 2015. Temporal spatial-keyword
top-k publish/subscribe. In ICDE. 255–266.

[7] Lisi Chen, Gao Cong, Christian S Jensen, and Dingming Wu. 2013. Spatial
keyword query processing: an experimental evaluation. PVLDB 6, 3 (2013),
217–228.

[8] Yen-Yu Chen, Torsten Suel, and Alexander Markowetz. 2006. E�cient query
processing in geographic web search engines. In SIGMOD. 277–288.

[9] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, Yu Zheng, and Xing Xie. 2010.
Searching trajectories by locations-an e�ciency study. In SIGMOD. 255–266.

[10] Zhiyuan Cheng, James Caverlee, Krishna Y Kamath, and Kyumin Lee. 2011.
Toward tra�c-driven location-based web search. In CIKM. 805–814.

[11] Maria Christoforaki, Jinru He, Constantinos Dimopoulos, Alexander Markowetz,
and Torsten Suel. 2011. Text vs. space: e�cient geo-search query processing. In
CIKM. 423–432.

[12] Gao Cong, Christian S Jensen, and Dingming Wu. 2009. E�cient retrieval of the
top-k most relevant spatial web objects. PVLDB 2, 1 (2009), 337–348.

[13] Caio Moura Daoud, Edleno Silva de Moura, Andre Carvalho, Altigran Soares da
Silva, David Fernandes, and Cristian Rossi. 2016. Fast top-k preserving query
processing using two-tier indexes. Information Processing & Management 52, 5
(2016), 855–872.

[14] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. 2008. Keyword search on
spatial databases. In ICDE. 656–665.

[15] Constantinos Dimopoulos, Sergey Nepomnyachiy, and Torsten Suel. 2013. Op-
timizing top-k document retrieval strategies for block-max indexes. InWSDM.
113–122.

[16] Shuai Ding and Torsten Suel. 2011. Faster top-k document retrieval using block-
max indexes. In SIGIR. 993–1002.

[17] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation algo-
rithms for middleware. J. Comput. System Sci. 66, 4 (2003), 614–656.

[18] JiafengGuo, GuXu, Hang Li, andXueqi Cheng. 2008. A uni�ed and discriminative
model for query re�nement. In SIGIR. 379–386.

[19] Antonin Gu�man. 1984. R-trees: a dynamic index structure for spatial searching.
ACM SIGMOD Record 14, 2 (1984), 47–57.

[20] Ramaswamy Hariharan, Bijit Hore, Li Chen, and Sharad Mehrotra. 2007. Pro-
cessing spatial-keyword (SK) queries in Geographic Information Retrieval (GIR)
systems. In SSDBM. 16–25.

[21] Je� Huang and E�himis E�himiadis. 2009. Studying query reformulation strate-
gies in search logs. In CIKM. 77–86.

[22] Zhisheng Li, Ken C K Lee, Baihua Zheng, Wang Chien Lee, Dik Lee, and Xufa
Wang. 2011. IR-tree: An e�cient index for geographic document search. IEEE
Transactions on Knowledge and Data Engineering 23, 4 (2011), 585–599.

[23] Zhicheng Li, Hu Xu, Yansheng Lu, and Ailing Qian. 2010. Aggregate nearest
keyword search in spatial databases. In APWeb. 15–21.

[24] Dimitris Papadias, Yufei Tao, Kyriakos Mouratidis, and Chun Kit Hui. 2005.
Aggregate nearest neighbor queries in spatial databases. ACM Transactions on
Database Systems 30, 2 (2005), 529–576.

[25] Shuyao Qi, Panagiotis Bouros, Dimitris Sacharidis, and Nikos Mamoulis. 2015.
E�cient point-based trajectory search. In SSTD. 179–196.

[26] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu,
Mike Gatford, and Others. 1995. Okapi at TREC-3. Nist Special Publication Sp
109 (1995), 109.

[27] Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Information Processing and Management 24, 5 (1988),
513–523.

[28] G Salton and M J Mcgill. 1986. Introduction to modern information retrieval.
McGraw-Hill, Inc., New York, NY, USA.

[29] Timos K Sellis, Nick Roussopoulos, and Christos Faloutsos. 1987. �e R+-tree: a
dynamic index for multi-dimensional objects. In VLDB. 507–518.

[30] Shuo Shang, Ruogu Ding, Bo Yuan, Kexin Xie, Kai Zheng, and Panos Kalnis. 2012.
User oriented trajectory search for trip recommendation. In EDBT. 156–167.

[31] Fei Song and W Bruce Cro�. 1999. A general language model for information
retrieval. In CIKM. 316–321.

[32] Amanda Spink, Bernard J Jansen, Dietmar Wolfram, and Te�o Saracevic. 2002.
From e-sex to e-commerce: Web search changes. Computer 35, 3 (2002), 107–109.

[33] Trevor Strohman and W. Bruce Cro�. 2007. E�cient document retrieval in main
memory. In SIGIR. 175–182.

[34] Lu An Tang, Yu Zheng, Xing Xie, Jing Yuan, Xiao Yu, and Jiawei Han. 2011.
Retrieving k-nearest neighboring trajectories by a set of point locations. In SSTD.
223–241.

[35] Sheng Wang, Zhifeng Bao, J Shane Culpepper, Timos Sellis, Mark Sanderson,
and Xiaolin Qin. 2017. Answering top-k exemplar trajectory queries. In ICDE.
597–608.

[36] Dingming Wu, Man Lung Yiu, Christian S. Jensen, and Gao Cong. 2011. E�cient
continuously moving top-k spatial keyword query processing. In ICDE. 541–552.

[37] Kai Yao, Jianjun Li, Guohui Li, and Changyin Luo. 2016. E�cient group top-k
spatial keyword query processing. In APWeb. 153–165.

[38] Man Lung Yiu, Nikos Mamoulis, and Dimitris Papadias. 2005. Aggregate nearest
neighbor queries in road networks. IEEE Transactions on Knowledge and Data
Engineering 17, 6 (2005), 820–833.

[39] Yong Zeng, Zhifeng Bao, Tok Wang Ling, H. V. Jagadish, and Guoliang Li. 2014.
Breaking out of the MisMatch trap. In ICDE. 940–951.

[40] Dongxiang Zhang, Chee-Yong Chan, and Kian-Lee Tan. 2014. Processing spatial
keyword query as a top-k aggregation query. In SIGIR. 355–364.

[41] Dongxiang Zhang, Kian-Lee Tan, and Anthony K. H. Tung. 2013. Scalable top-k
spatial keyword search. In EDBT. 359.

[42] Kai Zheng, Shuo Shang, Nicholas Jing Yuan, and Yi Yang. 2013. Towards e�cient
search for activity trajectories. In ICDE. 230–241.

[43] Kai Zheng, Han Su, Bolong Zheng, Jiajun Liu, and Xiaofang Zhou. 2015. Interac-
tive top-k spatial keyword queries. In ICDE. 423–434.

[44] Yu Zheng. 2011. T-Drive: driving directions based on taxi trajectories. In SIGSPA-
TIAL. 99–108.

[45] Yuxin Zheng, Zhifeng Bao, Lidan Shou, and Anthony K H Tung. 2015. INSPIRE :
a framework for incremental spatial pre�x query relaxation. IEEE Transactions
on Knowledge and Data Engineering 27, 7 (2015), 1949–1963.

[46] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. 2009. Mining interesting
locations and travel sequences from GPS trajectories. InWWW. 791–800.

[47] Yinghua Zhou, Xing Xie, Chuang Wang, Yuchang Gong, and Wei-Ying Ma. 2005.
Hybrid index structures for location-based web search. In CIKM. 155–162.

[48] Liang Zhu, Yinan Jing, Weiwei Sun, Dingding Mao, and Peng Liu. 2010. Voronoi-
based aggregate nearest neighbor query processing in road networks. In SIGSPA-
TIAL. 518–521.

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

609


	Abstract
	1 Introduction
	2 Preliminaries & Related Work
	2.1 Single-point Search
	2.2 Multiple-point Search
	2.3 Query Refinement
	2.4 Summary

	3 Problem Definition
	4 A Unified Processing Paradigm
	4.1 Preliminary
	4.2 Index Structure-TGP
	4.3 Operators over TGP
	4.4 Early Termination & Abandoning over Inverted Lists
	4.5 Discussion on Supporting Boolean Queries

	5 Optimization for Query Refinement
	5.1 Query Refinement
	5.2 Reusable Scanned Objects

	6 Experiments
	6.1 Settings
	6.2 Performance Evaluation

	7 Conclusion and Future Work
	8 Acknowledgment
	References



