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ABSTRACT
The amount of spatial data in open data portals has increased
rapidly, raising the demand for spatial dataset search in large data
repositories. In this paper, we tackle spatial dataset search by us-
ing the Earth Mover’s Distance (EMD) to measure the similarity
between datasets. EMD is a robust similarity measure between two
distributions and has been successfully applied to multiple domains
such as image retrieval, document retrieval, multimedia, etc. How-
ever, the existing EMD-based studies typically depend on a common
filtering framework with a single pruning strategy, which still has
a high search cost. To address this issue, we propose a Dual-Bound
Filtering (DBF) framework to accelerate the EMD-based spatial
dataset search. Specifically, we represent datasets by Z-order his-
tograms and organize them as nodes in a tree structure. During a
query, two levels of filtering are conducted based on pooling-based
bounds and a TICT bound on EMD to prune dissimilar datasets
efficiently. We conduct experiments on four real-world spatial data
repositories and the experimental results demonstrate the efficiency
and effectiveness of our DBF framework.
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1 INTRODUCTION
Recently, many dataset search engines have been proposed to sup-
port data discovery [8, 11, 13, 19, 25, 30, 49], such as Google Dataset
Search [9], Dataverse [16], and Aurum [20]. These dataset search en-
gines typically require users to specify query conditions. However,
in many cases, users may not be accustomed to the query language
or do not know how to describe the data of interest [14]. To tackle
this, the exemplar query has been proposed [28, 29], which directly
takes an example data of interest as input to search for relevant
data in a database.
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There has been a growing interest in exemplar dataset search
recently [11, 19, 32, 38, 48, 58, 60]. For example, in the Auctus [11]
search system, users can use the bicycle usage data for one month as
an exemplar dataset to retrieve relevant datasets for other months,
in order to build a more robust model for prediction tasks, e.g., pre-
dicting the number of bicycle trips based on the daily temperature
features. In RONIN [32], users can use an example dataset related to
smart city to search for additional datasets that are joinable based
on the set containment between datasets.

As an essential part of real-world datasets, spatial datasets have
gained increasing popularity throughout the world. Hahmann and
Burghardt [24] show that at least 60% of open government datasets
are georeferenced, and spatial dataset search has been a core func-
tion in open government data portals [18, 26, 47]. In this paper, we
focus on exemplar query for spatial dataset search, which has many
important real-world applications. For example, in autonomous
driving motion forecasting, a data analyst can obtain relevant driv-
ing datasets with a given query via spatial dataset search, in order
to improve the forecasting accuracy (see Sec 5.3 in [12]). In tourism
trip planning, a tourist can search for alternative routes that are sim-
ilar to the current one, allowing more flexibility for travel [48, 50].
In addition, spatial dataset search can also be used for data imputa-
tion, by searching for relevant datasets in a database to impute the
missing values in a given spatial dataset [11, 59].

In the above applications of spatial dataset search, how to effec-
tively measure the similarity between datasets is a core challenge.
One approach to measure similarity is utilizing the overlapping area
of the minimum bounding rectangle (MBR) that covers all points in
datasets [18, 22, 47]. Figure 1 shows an example of spatial dataset
search with a query dataset 𝑄 and two candidate datasets 𝑃 and 𝑅.
In Figure 1(a), the red, blue, and black boxes represent the MBRs
of dataset 𝑃 , 𝑄 , and 𝑅, respectively. We can see that although 𝑅

(compared with 𝑃 ) is less similar to𝑄 , the overlapping area between
𝑅 and 𝑄 is greater than that between 𝑃 and 𝑄 . This indicates that
the MBR-based similarity measure is not reliable.

Another approach is to compute the distance among points in the
spatial datasets [1, 18, 31], e.g., the Hausdorff distance [31, 37, 44]
that computes the maximum nearest neighbor distance between
pairs of points. However, the Hausdorff distance is sensitive to
outliers. As shown in Figure 1(b), the nearest neighbor distances of
most points between 𝑃 and 𝑄 are small, but the nearest neighbor
distance of the outlier 𝑝1 is large. The outlier 𝑝1 results in the
Hausdorff distance between 𝑃 and 𝑄 larger than that between 𝑅
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Figure 1: Given a query dataset𝑄 and two candidate datasets
𝑃 and 𝑅, we want to identify which one is more similar to 𝑄 .
Although𝑄 and𝑅 have a larger overlapping area and smaller
Hausdorff distance, most of the points in 𝑃 are closer to 𝑄 .

and 𝑄 . Moreover, as the Hausdorff distance has a quadratic time
complexity [31] regarding the number of points in the dataset, it
is slow for searching in large-scale datasets containing millions
of points. In addition, as the Hausdorff distance needs to compute
the nearest neighbor distance of each point in the dataset, it faces
the problem of privacy restrictions in the scenario, where data
owners do not allow third-parties to access their specific location
information for avoiding privacy leakage [10].

Hence, it is advantageous to compress the original dataset as a
distribution [10, 15, 42, 56, 57] and measure the similarity between
datasets via the Earth Mover’s Distance (EMD), which is one of the
effective distance metrics between distributions [7, 39, 40, 42, 51].
An example is illustrated in Figure 1(c), where we divide the whole
space into a grid and count the density of points in each entry of
the grid for each dataset (see Figures 1(d), 1(e) and 1(f)). The EMD,
also known as Wasserstein-1 distance, is defined as the minimum
cost to transform one distribution into the other, where the cost is
the sum of the product of the moved mass and distance. EMD is
widely adopted by real-world applications, including image retrieval
[4, 7, 40, 45, 52], machine learning [2], deep learning [3, 58] and
natural language processing [5, 27], etc.

Compared with the overlapping area and Hausdorff distance,
EMD [39, 40] is a more reliable measure to identify the similarity
between two datasets. However, it has 𝑂 (𝑛3 log𝑛) computational
complexity, where 𝑛 is the number of histogram bins. Most of
the existing studies utilize lower bounds of EMD to implement a
scan-and-refinement (SAR) search algorithm [4–6, 27, 33, 40, 46,
52]. For top-𝑘 search, the SAR algorithm firstly computes a lower
bound on the EMD between the query dataset and each of the
candidate datasets, and generates a ranking for the datasets based
on their lower bounds. The algorithm then computes the exact EMD
between the query dataset and the top 𝑘 datasets according to the
ranking. For each of the remaining datasets (rank < 𝑘), if its lower
bound on EMD is greater than the EMD of the current 𝑘-th nearest
neighbor, the dataset can be pruned directly; otherwise, the EMD
between the dataset and the query dataset needs to be computed.

The above studies have high filtering costs since they require the
computation of a lower bound for each of the datasets in the data
repository. Another approach combines lower bounds with index
structure, such as B+-tree [54] and quadtree [41]. These methods
can prune datasets in batch and obtain the candidate datasets (i.e.,
datasets not pruned) by computing the lower bound between the
tree nodes and the query dataset. Then, they compute the exact
EMD for each candidate dataset and identify the top-𝑘 datasets with
the smallest EMD distance. Although these methods can quickly
obtain the candidate set, they are limited with the filtering ratio
since they need to compute the exact EMD for each candidate.

We propose a Dual-Bound Filtering (DBF) framework to improve
the filtering ratio, which successfully combines the index-based
filtering and SAR search. Specifically, we first propose a novel
Z-order histogram to model spatial dataset. During a query, we
combine a new tree-structured index and pooling-based bounds
to filter datasets in batch. Then, we propose a Tighter Iterative
Constrained Transfers (TICT) bound to conduct SAR search, which
can further reduce the number of candidate datasets. Overall, the
contributions of this paper are summarized as follows:
• We propose DBF, a dual filtering framework composed of
two-level filtering modules from coarse-grained to fine-
grained to support similarity search based on spatial dataset
density distribution (see Section 4).
• We propose a novel data modeling approach named Z-order
histogram, which not only saves much storage space but can
also be applied to different resolutions through an efficient
pooling operation (see Section 5).
• To improve the search efficiency, we design an efficient tree-
structured index and deduce pooling-based bounds and the
TICT bound to improve the filtering ratio (see Section 6).
• Our experimental results on four spatial data repositories
show the superiority of our DBF framework (see Section 7).

2 RELATEDWORK
2.1 Dataset Similarity Search
The dataset similarity search can be broadly divided into textual
and numeric dataset similarity searches. For the first type of search,
the most commonly used similarity measures include Jaccard sim-
ilarity and containment [8, 21], cosine similarity [32, 59], and set
intersection size [53, 60], etc. For example, Ouellette et al. [32] used
cosine similarity to measure the similarity between two semantic
vectors extracted from datasets. Fernandez et al. [21] proposed a
LAZOmethod to simultaneously estimate the Jaccard similarity and
containment between two columns of data. Zhu et al. [60] proposed
a JOSIE algorithm to find the joinable column in the database with
the given column of a table by using the set intersection size as a
similarity measure.

For numeric datasets, the similarity search is based on the dis-
tance or overlapping area between datasets. The spatial dataset is
an important sub-category of the numeric dataset. The commonly
used similarity measures mainly includes MBR [22] and Hausdorff
distance [36], etc. For example, Nutanong et al. [31] proposed to
apply the Hausdorff distance as a similarity measure between two
datasets and derived upper and lower bounds by the distance be-
tweenMBRs of two datasets. Adelfio et al. [1] proposed an improved



lower bound of Hausdorff distance called ENHLB and an R-tree
[23] index structure to accelerate the spatial similarity search. Vas-
concelos et al. [47] proposed the spatial similarity based on the
overlapping area of the bounding box containing all data to im-
prove spatial search in the Brazilian open government data portal.
Degbelo and Teka [18] compared the impact of utilizing Hausdorff
distance and area of overlap on spatial similarity search efficiency.
Hervey et al. [26] studied the state of search on open geospatial
data portals and evaluated the functionality of their search engines.

However, the existing methods are not well suited for spatial
dataset search. First, the above textual dataset measures are not
applicable for spatial datasets, which are numeric. Second, in the
existing spatial dataset similarity measures, MBR is too coarse-
grained and does not consider how data distributes in the bounding
boxes. Meanwhile, the Hausdorff distance is inherently sensitive to
outliers and potentially leaks the privacy of individuals. To over-
come these shortcomings of the previous methods, we will apply
EMD to measure the spatial dataset similarity, which is robust and
effective in measuring the distance between two distributions.

2.2 EMD-based Similarity Search
Due to the cubic complexity of EMD computation, it is challeng-
ing to apply EMD, especially in search scenarios that require fast
responses. Numerous lower and upper bounds of EMD have been
proposed to accelerate the process of EMD-based similarity search.
For example, Rubner et al. [40] proposed a centroids-based lower
bound of EMD. Wichterich et al. [52] deduced a dimensionality
reduction-based lower bound of EMD. Tang et al. [45] proposed a
dynamic lower bound in the process of exact EMD computation,
which is used to terminate an EMD refinement early. Kusner et al.
[27] proposed a lower bound by removing the out-flow or in-flow
constraint. Uysal et al. [46] proposed an IM-Sig∗ lower bound by
relaxing the in-flow constraint of the EMD. Atasu and Mittelholzer
[5] proposed an Iterative Constrained Transfers (ICT) lower bound
based on the greedy strategy. However, these methods have high
filtering costs during candidate generation.

Assent et al. [4] constructed a 3D index based on the weighted
lower bound, which can only handle the 3D color space in the
image domain. Ruttenberg and Singh [41] proposed a new lower
bound of EMD by projecting each dataset distribution onto a vector
and designed a new quadtree-based index structure. Xu et al. [54]
proposed lower and upper bounds utilizing the primal-dual theory
and constructed a forest of 𝐵+-trees [23] based on one of the feasi-
ble solutions of EMD. We summarize several representative EMD
studies in Table 1. To sum up, the previous applications of EMD
are mainly in the fields of image [40, 45, 52], document [5, 27], and
video [46], but it has never been applied to the spatial dataset search.
In addition, the existing methods implemented lower bound-based
SAR search or index-based filtering; both are single-layer pruning
and are limited by the filtering ratio. Thus, it is necessary to design
an effective dual filtering framework for spatial datasets to improve
the filtering ratio.
3 PRELIMINARIES
3.1 Earth Mover’s Distance
Given two histograms q and p, where q has𝑚 bins and p has 𝑛 bins,
i.e. q = {𝑞1, 𝑞2, . . . , 𝑞𝑚} and p = {𝑝1, 𝑝2, . . . , 𝑝𝑛}. The total density

Table 1: An overview of existing EMD studies.

Name ComplexityBound Dataset Index

𝐿𝐵𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [40] 𝑂 (𝑛) LB Image No
𝐿𝐵𝐼𝑀 [4] 𝑂 (𝑛2) LB Image 3D-index
𝑅𝑒𝑑 [52] −− LB Image No

𝑁𝑜𝑟𝑚𝑎𝑙 [41] 𝑂 (𝑛) LB Image Quadtree
𝑑𝑢𝑎𝑙𝐸𝑀𝐷 [54] −− LB, UB Image 𝐵+-tree

𝑆𝐼𝐴 [45] 𝑂 (𝑛2) LB,UB Image No
𝑅𝑊𝑀𝐷 [27] 𝑂 (𝑛2) LB Document No
𝐼𝑀-𝑆𝑖𝑔∗ [46] 𝑂 (𝑛2 log𝑛) LB Video No

𝐼𝐶𝑇 [5] 𝑂 (𝑛2 log𝑛) LB Document No

of q and p are normalized to one, i.e.,
∑𝑚
𝑖=1 𝑞𝑖 =

∑𝑛
𝑗=1 𝑝 𝑗 = 1.1

We denote a flow matrix as F, where 𝑓 (𝑖, 𝑗) indicates the flow to
move from 𝑞𝑖 to 𝑝 𝑗 , and a distance matrix D, where 𝑑 (𝑖, 𝑗) is the
ground distance between 𝑞𝑖 and 𝑝 𝑗 . The optimization goal of the
EMD problem is to find the optimal flow that minimizes the overall
cost of moving q into p. The EMD can be formally defined as:

𝐸𝑀𝐷 (q, p) = min
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑓 (𝑖, 𝑗)𝑑 (𝑖, 𝑗) (1)

subject to the following constraints:

∀𝑖 ∈ [1,𝑚] :
𝑛∑
𝑗=1

𝑓 (𝑖, 𝑗) = 𝑞𝑖 (2)

∀𝑗 ∈ [1, 𝑛] :
𝑚∑
𝑖=1

𝑓 (𝑖, 𝑗) = 𝑝 𝑗 (3)

∀𝑖 ∈ [1,𝑚], 𝑗 ∈ [1, 𝑛] : 𝑓 (𝑖, 𝑗) ≥ 0 (4)
where the out-flow constraint (2) ensures that the total flow exiting
𝑖 is equal to 𝑞𝑖 , the in-flow constraint (3) ensures that the total
flow entering 𝑗 is equal to 𝑝 𝑗 , and the non-negative constraint (4)
ensures that the flow is from 𝑞𝑖 to 𝑝 𝑗 .

Next, we illustrate the computation process of EMD via a toy
example in Figure 2, where the 2D space is divided into a 4 × 4
grid (namely 16 bins)2, and the numbers 0 to 3 at the horizontal
and vertical axes represent the position in each dimension, and
the numbers 1 to 16 represent the ID of bins. The distributions of
datasets can be represented by histograms, e.g., Figures 2(b), 2(c)
and 2(d) show the histograms of the three datasets in Figure 1(c).
To simplify the computation, here we use the Manhattan distance
[54] as the ground distance, e.g., the distance from 𝑞7 to 𝑞5 is |3 −
1| + |2 − 2| = 2.

In Figures 3(a) and 3(b), we present the optimal flows from q to
p and q to r, respectively. Based on the optimal flow in Figure 3(a),
we can compute 𝐸𝑀𝐷 (q, p) = 0.1 × 2 + 0.1 + 0.1 × 2 + 0.1 × 2 = 0.7.
Similarly, based on Figure 3(b), we can compute 𝐸𝑀𝐷 (q, r) = 0.1 ×
1 + 0.3 × 2 + 0.3 × 2 = 1.3. As 𝐸𝑀𝐷 (q, p) < 𝐸𝑀𝐷 (q, r), the dataset
𝑃 is identified as more similar to 𝑄 , which is consistent with the
true result. In contrast, using the MBR or Hausdorff distance as the
similarity measure would lead to the wrong result (see Figure 1).
1Note that the EMD holds the non-negativity, symmetry and triangle inequality when
the histograms have equal density [40].
2The entry in the grid corresponds to the bin of the histogram.
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Figure 2: Examples of dataset density distributions in the
form of histograms.
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Figure 3: The optimal flows of EMD computation.
Table 2: Summary of notations.

Symbol Description

𝐷 , D a dataset and a data repository
|𝐷 | the number of spatial points in 𝐷

𝑁𝑄 , 𝑁𝑃 the nodes of spatial dataset 𝑄 and 𝑃
q, p the Z-order histograms of 𝑄 and 𝑃
𝑓 (𝑖, 𝑗) the density flow from 𝑞𝑖 to 𝑝 𝑗
𝑑 (𝑖, 𝑗) the ground distance between 𝑞𝑖 and 𝑝 𝑗
ℎ,𝑤 the height and width of the whole 2D space
𝜇, 𝜈 the height and width of each entry in the grid
2𝜃 the number of entries in each dimension
(𝑥,𝑦) the coordinate of point
𝜌𝑖, 𝑗 the dataset density in the 𝑖-th row 𝑗-th column entry

𝜎𝑖, 𝑗
the number of points falling into
the 𝑖-th row 𝑗-th column entry

𝜁 (q, q′) the pooling cost between q and q′

𝛾 (𝑞) the radius of dataset node 𝑁𝑄

This indicates that EMD is a more robust similarity measure than
the MBR and Hausdorff distance.

3.2 Problem Definitions
Definition 1. (Spatial Dataset). A spatial dataset 𝐷 con-

tains a set of points marked with spatial locations, i.e., 𝐷 =

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑡 , 𝑦𝑡 )}, |𝐷 | = 𝑡 is the total number of points
in this dataset.

Definition 2. (Spatial Data Repository). A spatial data repos-
itory D contains a set of spatial datasets, i.e., D = {𝐷1, 𝐷2, . . . , 𝐷𝑛},
|D| = 𝑛 is the scale of this repository.

Definition 3. (Spatial Dataset Distribution). The whole
space containing all spatial datasets is divided into a 2𝜃 ×2𝜃 grid. The
coordinates and densities of all non-zero entries in the grid jointly con-
stitute a histogram q = {𝑞1, 𝑞2, . . . , 𝑞𝑚}, and the sum of all densities
is equal to 1, i.e.,

∑𝑚
𝑖=1 𝑞𝑖 = 1.

Definition 4. (Top-𝑘 EMD Dataset Search). Given a query
dataset 𝑄 , a top-𝑘 EMD dataset search returns 𝑘 datasets from D,
which have the minimum EMDs with 𝑄 .

4 OVERALL FRAMEWORK
In this section, we introduce a Dual-Bound Filtering (DBF) frame-
work to answer the top-𝑘 EMD dataset search. As shown in Figure 4,
DBF is composed of four modules described as follows.
Data Modeling. For the 2D space containing all spatial datasets
(see Figure 4(a)), we first divide it into a 2𝜃 × 2𝜃 grid to preserve
the spatial location information instead of partitioning each spatial
dataset individually (see Figure 4(b)), where 𝜃 is called resolution.
Then, we compute the density of the dataset in each entry of the grid.
When storing the spatial distribution of each dataset, we propose a
compact data structure called Z-order histogram to reduce storage
space. More details of the Z-order histogram will be described in
Section 5.1.
Index Construction. We construct a new tree index structure for
all datasets (see Figure 4(c)). We first convert each dataset into a
Z-order histogram with only one non-zero entry by the Z-order
poolingmethod and obtain a pooling cost caused by density transfer.
Then, we treat each dataset as a node with radius and center. Finally,
we create a new tree-structured index based on all dataset nodes.
(see Section 6.1 for details).
Coarse-grained Filtering. As shown in Figure 4(d), after con-
structing the index, we traverse the index tree from the root node
one by one in a depth-first manner and compute their pooling-based
lower and upper bounds (see Section 6.2). Then, we take the branch-
and-bound search to prune those tree nodes whose lower bound is
greater than the maximum upper bound of unfiltered nodes. After
the traversal process is completed, all datasets contained in the
unfiltered nodes form our first-round candidate set. More details
are introduced in Section 6.3.
Fine-grained Filtering. As shown in Figure 4(e), after obtaining
the candidate datasets, we propose a TICT bound based on the
ICT lower bound [5] to improve the filtering ratio. We perform a
scan and refinement (SAR) search over the first-round candidate
set. Those candidates whose TICT bound exceeds the exact EMD
of the 𝑘-th closest dataset are directly filtered out. More details are
introduced in Section 6.4.

5 DATA MODELING
To apply EMD to spatial dataset similarity search, we divide the 2D
spatial space into grids and represent the distribution of a spatial
dataset by the densities of data points in the grid.
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Figure 5: A comparison of matrix and Z-order histogram.

5.1 Z-order Histogram
In the process of generating the Z-order histogram, we first initialize
a 2D space based on the position (𝑥0, 𝑦0), where the size of space is
ℎ ×𝑤 . Then, we divide the space into a 2𝜃 × 2𝜃 grid, and hence the
height and width of each entry of the grid are 𝜇 = ℎ

2𝜃 and 𝜈 = 𝑤
2𝜃 .

As shown in Figure 5(a), the 2D space is divided into a 4 × 4 grid.
Assuming that the position of a point in dataset 𝑄 is (𝑥𝑖 , 𝑦𝑖 ), then
its corresponding entry coordinate is defined as:

𝑋 = ⌊𝑥𝑖 − 𝑥0
𝜈
⌋, 𝑌 = ⌊𝑦𝑖 − 𝑦0

𝜇
⌋, (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝐷

The density of each entry is calculated by counting the number
of points falling into each entry and dividing the counts by the total
number of points in 𝐷 . The density computation formula of the
spatial dataset 𝐷 in each entry is defined as:

𝜌𝑖, 𝑗 =
𝜎𝑖, 𝑗

|𝐷 | , 𝑖 ∈ [1, 2
𝜃 ], 𝑗 ∈ [1, 2𝜃 ]

where 𝜎𝑖, 𝑗 denotes the number of points falling into the entry of
𝑖-th row and 𝑗-th column, and |𝐷 | represents the total number of
points in 𝐷 .

As shown in Figure 5(b), each spatial dataset distribution can
be regarded as a matrix, and hence a baseline approach to store
the density distribution of a spatial dataset is to use a matrix [43].
However, in Figure 5(c), we can see that the matrix is sparse, which
means most of the entries have a value of zero. Thus, much space
is wasted if we use a matrix for storage. We present a compact data
structure called Z-order histogram to store the one-dimensional
distribution of each dataset, which saves memory by storing only
the non-zero entries. The Z-order histogram is formally defined as:

Q Q

0 1 2 3
0

1

2

3

0 1 2 3 4 5 6 7

1
0

2
3
4
5
6
7 Q

0 1

0

1

Z-value density
13 0.2
24 0.1
26 0.1
27 0.1
49 0.2
51 0.1
57 0.2

Decode
Transform

3 0.2

9 0.3

density

13 0.2

Z-value

12 0.3

Z-order pooling
(2,3)

(2,1)
(2,1)
(2,1)
(2,2)
(2,2)

(1,1)
(4,2)
(4,3)
(5,3)
(5,4)
(5,5)
(5,6)

(3,2)

Figure 6: The diagram of Z-order pooling method.

Definition 5. (Z-order histogram). A Z-order histogram of a
spatial dataset 𝑍 = {(𝑧1, 𝜌1), (𝑧2, 𝜌2), . . . , (𝑧𝑚, 𝜌𝑚)}, where 𝑧𝑖 and
𝜌𝑖 are the Z-value and density of the 𝑖-th non-zero entry, respectively,
and𝑚 is the number of non-zero entries in the grid.

As shown in Figure 5(d), we map the coordinate of each entry in
the grid to an integer named Z-value by the Z-order curve [34, 56].
Specifically, the entry coordinate is first converted to a binary rep-
resentation. Then, we interlace the bits of the binary representation
of coordinate to generate a combined binary string. Finally, the
resulting binary string can be interpreted as an integer to identify
the entry uniquely (see Figure 5(e)). After obtaining the density
distribution, we use a hashmap to store the Z-value and density of
all non-zero entries (see Figure 5(f)).

5.2 Z-order Pooling
When modeling the spatial dataset, if using a high resolution, the
whole space is divided too fine-grained, so the number of histogram
bins will increase, which also increases the time cost of EMD com-
putation. On the contrary, if the resolution is too low, it will reduce
the accuracy of the similarity search. Therefore, the choice of res-
olution is critical. To obtain an appropriate resolution, we divide
the whole space according to the sampling distance of the entries.
In addition, we also investigate how to dynamically choose an ap-
propriate resolution based on the trade-off between query time
and accuracy. The details on resolution selection are shown in the
appendix of technical report [55]. As shown in Figure 6, we first
obtain a fine-grained Z-order histogram under a resolution 𝜃1 based
on the distance sampling.



Algorithm 1: PoolingCost(𝑄)
Input:𝑄 : dataset
Output: 𝜁 : pooling cost

1 q← Generate the Z-order histogram of dataset𝑄 ;
2 𝑞𝑖 ← Find the maximum 𝑞𝑖 from q = {𝑞1, 𝑞2, . . . 𝑞𝑚 };
3 𝜁 ← 0 ;
4 foreach 𝑞 𝑗 ∈ q and 𝑗 ≠ 𝑖 do
5 𝑓 ← 𝑞𝑖 ;
6 𝑑 ← 𝑑𝑖𝑠𝑡 (𝑞𝑖 , 𝑞 𝑗 ) ;
7 𝜁 ← 𝜁 + 𝑓 × 𝑑 ;
8 𝑞 𝑗 ← 0;
9 return 𝜁 ;

However, it would be time-consuming to scan all datasets in
the data repository and compute their density distributions if the
resolution obtained need to be changed during the data model-
ing. We present a novel Z-order pooling method to obtain Z-order
histograms under various resolutions specified by users without
rescanning the datasets. To obtain the distribution under a lower
resolution 𝜃2, we decode the Z-value at the resolution 𝜃1 into the
corresponding coordinate (𝑋1, 𝑌1). We then use the formulas be-
low to transform (𝑋1, 𝑌1) into the new coordinate (𝑋2, 𝑌2) at the
resolution 𝜃2:

𝑋2 = ⌊
𝑋1

2(𝜃1−𝜃2)
⌋, 𝑌2 = ⌊

𝑌1
2(𝜃1−𝜃2)

⌋

Next, we encode 𝑋2 and 𝑌2 into a new Z-value and accumulate
the density of the entries with the same Z-value. By doing so, we
obtain a new Z-order histogram under 𝜃2. Compared with the re-
peated scanning of the dataset after the resolution is changed, the
Z-order pooling method dramatically reduces the modelling time.

6 INDEX STRUCTURE AND PRUNING
MECHANISMS

In this section, we design a new index structure and derive pooling-
based lower and upper bounds and a TICT bound based on the
ICT lower bound [5] to support our efficient dual-bound filtering
framework.

6.1 Index Construction
As discussed in Section 5.2, we can decrease the resolution to gen-
erate fewer entries in the grid. For example, in Figure 6, we can
generate a 2 × 2 or 4 × 4 grid from the 8 × 8 grid by the pooling
operation. Due to the high time complexity of the EMD, it is faster
to compute the exact EMD for two Z-order histograms with fewer
bins. We transform the original Z-order histogram of each spatial
dataset into a histogram with only one non-zero entry by using
the Z-order pooling method. Thus, the exact EMD between two
datasets equals the ground distance between two non-zero entries.
There is a transfer cost generated in Z-order pooling, which is
crucial for deriving the pooling-based lower and upper bounds.

Algorithm 1 shows the specific computation process of the Z-
order pooling cost. Specifically, for a given dataset𝑄 , we first trans-
form the dataset𝑄 into a Z-order histogram q (see Line 1). Then, we
find the entry with the highest density (see Line 2). Subsequently,

we transfer the densities of other entries into it and generate trans-
fer costs (see Line 4 to Line 8).
Complexity Analysis. For Algorithm 1, the time cost of generat-
ing a Z-order histogram is linear in terms of the number of entries
in a grid. In other operations (from Line 2 to Line 9), the time cost is
linear in terms of the number of bins in q, since we need to traverse
all bins in q.

After pooling all datasets in the data repository, each dataset
can be treated as a node whose center 𝑐 is the coordinate of the
entry with the highest density before pooling operation and radius
𝛾 is the pooling cost. We further create an index structure in a top-
bottom way based on these dataset nodes. Firstly, we get the root
node based on all dataset nodes, whose center is the centroid of
all dataset nodes. Since each dataset node has a radius, in order to
cover all dataset nodes, the radius of the root node is the maximum
of the ground distance from the root to the dataset node plus the
pooling cost of the dataset node. Then, we select two furthest nodes
among all the dataset nodes. We divide the root node into the left
child node and right child node according to the ground distance of
the remaining nodes to the two nodes. Finally, we repeat the above
procedure until the leaf node satisfies capacity constraint or the
depth of the tree satisfies maximum value.

6.2 Pooling-Based Upper and Lower Bounds
We can deduce the lower and upper bounds of 𝐸𝑀𝐷 (q, p) by using
the Z-order pooling and the triangle inequality for two histograms
q and p. We first prove that the pooling cost 𝜁 (q, q′) equals the
𝐸𝑀𝐷 (q, q′) in the following lemma, where q′ denotes the Z-order
histogram after pooling operation.

Lemma 6.1. The 𝜁 (q, q′) equals the EMD between q and q′, i.e.,
𝜁 (q, q′) = 𝐸𝑀𝐷 (q, q′).

A detailed proof of Lemma 6.1 is given in the appendix of tech-
nical report [55]. Then, we propose the following lower and upper
bounds based on the triangle inequality.

Lemma 6.2. Let q and p be two Z-order histograms of equal total
density. It holds:

𝐸𝑀𝐷 (q, p) ≤ 𝐸𝑀𝐷 (q′, p′) + 𝜁 (q, q′) + 𝜁 (p, p′) (5)
𝐸𝑀𝐷 (q, p) ≥ min{| |𝐸𝑀𝐷 (q′, p′) − 𝜁 (q, q′) | − 𝜁 (p, p′) |,

| |𝐸𝑀𝐷 (q′, p′) − 𝜁 (p, p′) | − 𝜁 (q, q′) |}
(6)

A detailed proof of Lemma 6.2 is given in the appendix of tech-
nical report [55]. We use the density distributions of 𝑄 and 𝑃 to
illustrate the pooling-based lower and upper bounds. In Figure 7,
we show the density transfer and the position of the entry with
the highest density. Based on Algorithm 1, we can compute the
pooling cost 𝜁 (q, q′) = 0.2 × 2 + 0.3 × 1 + 0.2 × 1 = 0.9 and
𝜁 (p, p′) = 0.1× 1+ 0.1× 1+ 0.1× 2+ 0.2× 2+ 0.2× 3 = 1.4. Since the
histogram of each dataset has only one non-zero entry after pooling
operation, the EMD between q′ and p′ is easier to compute, which
equals the ground distance between two non-zero entries of q′ and
p′, i.e., 𝐸𝑀𝐷 (q′, p′) = 1. By using Lemma 6.2, we can compute
𝐸𝑀𝐷 (q, p) ≥ min{| |1−0.9|−1.4|, | |1−1.4|−0.9|} = min{1.3, 0.5} =
0.5, and 𝐸𝑀𝐷 (q, p) ≤ 1+0.9+1.4 = 3.3. As illustrated in Section 3.1
(see Figure 3(a)), we have computed 𝐸𝑀𝐷 (q, p) = 0.7, which is in
the range of 0.5 and 3.3.
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Figure 7: Pooling-based lower and upper bounds between
two close datasets.

In this example, the lower bound is tight while the upper bound
is quite loose. In the case that two datasets are far apart in the
space (the pooling cost is much lower than the ground distance
of two non-zero entities after pooling operation), the upper and
lower bounds are expected to be tight. According to the unique
characteristic, our pooling-based upper and lower bounds can be
well applied in spatial dataset search, where it can quickly prune
those datasets that are far apart in the space. In the next section,
we will further introduce how to conduct pruning in batch.

6.3 Coarse-grained Batch Filtering
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Figure 8: The lower and upper bounds between two nodes.

After constructing the index, we design corresponding pruning
strategies using the pooling-based lower and upper bounds. As
shown in the left of Figure 8, 𝑁𝑄 and 𝑁𝑃 denote two dataset nodes
generated by the pooling operation, 𝛾 (𝑞) and 𝛾 (𝑝) denote the radii
of 𝑁𝑄 and 𝑁𝑃 , and 𝑑 (𝑞, 𝑝) denotes the ground distance between
centers 𝑞 and 𝑝 . We have the following lemma:

Lemma 6.3. The EMD between dataset nodes 𝑁𝑄 and 𝑁𝑃 can be
bounded in the range:

𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑃 ) ≤ 𝑑 (𝑞, 𝑝) + 𝛾 (𝑞) + 𝛾 (𝑝)
𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑃 ) ≥ min{| |𝑑 (𝑞, 𝑝) − 𝛾 (𝑞) | − 𝛾 (𝑝) |,

| |𝑑 (𝑞, 𝑝) − 𝛾 (𝑝) | − 𝛾 (𝑞) |}

We can further derive the lower and upper bounds between
the query node and the internal nodes of the tree for conducting
filtering in batch. As shown in the right of Figure 8, 𝑁𝑂 repre-
sents an internal tree node, which contains a set of dataset nodes
{𝑁𝑃 , 𝑁𝑅, . . . , 𝑁𝑆 }. The radii of these dataset nodes are denote as
{𝛾 (𝑝), 𝛾 (𝑟 ), . . . , 𝛾 (𝑠)}. The radius of 𝑁𝑂 equals the maximum of
distance from the center 𝑜 to the center of dataset node plus the
radius of the dataset node, i.e., 𝛾 (𝑜) = max{𝑑 (𝑜, 𝑝) + 𝛾 (𝑝), 𝑑 (𝑜, 𝑟 ) +
𝛾 (𝑟 ), . . . , 𝑑 (𝑜, 𝑠)+𝛾 (𝑠)}. Let𝛾 (𝑜) denote the radius of𝑁𝑂 , and𝑑 (𝑞, 𝑜)

denote the ground distance between 𝑞 and 𝑜 . We have the following
lemma, and the detailed proof of this lemma is given in the appendix
of technical report [55]:

Lemma 6.4. The EMD between the dataset node 𝑁𝑄 and the inter-
nal node 𝑁𝑂 can be bounded in the range:

𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑂 ) ≤ 𝑑 (𝑞, 𝑜) + 𝛾 (𝑞) + 𝛾 (𝑜)
𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑂 ) ≥ min{| |𝑑 (𝑞, 𝑜) − 𝛾 (𝑞) | − 𝛾 (𝑜) |,

| |𝑑 (𝑞, 𝑜) − 𝛾 (𝑜) | − 𝛾 (𝑞) |}

In Algorithm 2, we display the candidate generation process of
index-based batch filtering in detail. We first initialize a null priority
queue to store all unfiltered leaf nodes (see Line 2). Then, we apply
the BranchAndBound Function from the root node (see Line 5). In
the pruning process, we check if the tree node 𝑁𝑂 is a leaf node. If
so, we compute the lower and upper bounds by Lemma 6.3. If the
lower bound is greater than the current maximum upper bound in
the priority queue, we can directly prune node 𝑁𝑂 (see Line 14 to
Line 19); otherwise, we insert node 𝑁𝑂 to the priority queue and
delete those nodes whose lower bound is greater than the upper
bound of 𝑁𝑂 (see Line 20 to Line 28).

If the node 𝑁𝑂 is an internal node, we compute the lower and
upper bounds by Lemma 6.4. Similarly, if the lower bound is greater
than the current maximum upper bound in the priority queue, we
can directly prune node 𝑁𝑂 and its sub-tree (see Line 31 to Line 32);
otherwise, we recursively perform BranchAndBound function for
the left and right child nodes of 𝑁𝑂 (see Line 33 to Line 36). After
recursively traversing the tree, we obtain a priority queue contain-
ing all unfiltered leaf nodes. The dataset nodes contained in the
unfiltered leaf nodes form the candidate set (see Line 6 to Line 10).

6.4 Fine-grained Filtering
To get a lower bound of EMD, Atasu and Mittelholzer [5] studied a
relaxed problem, which removes the in-flow constraint and require
that the flow 𝑓 (𝑖, 𝑗) ≤ min{𝑞𝑖 , 𝑝 𝑗 } on the basis of satisfying the out-
flow constraint (2). To highlight that we use density transfer cost
to measure the spatial dataset similarity, we refer to this relaxed
problem as the Relaxed Density Mover’s (RDM) problem. Since
the out-flow constraint is equivalent to 0 ≤ 𝑓 (𝑖, 𝑗) ≤ 𝑝 𝑗 , the RDM
problem is formally defines as:

Definition 6. Let q and p be two Z-order histograms, the RDM
is formally defined as:

min
𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑓 (𝑖, 𝑗)𝑑 (𝑖, 𝑗)

subject to:

∀𝑖 ∈ [1,𝑚] :
𝑛∑
𝑗=1

𝑓 (𝑖, 𝑗) = 𝑞𝑖 (7)

∀𝑖 ∈ [1,𝑚], 𝑗 ∈ [1, 𝑛], 0 ≤ 𝑓 (𝑖, 𝑗) ≤ 𝑝 𝑗 (8)

The constraint (7) requires that the total flow existing 𝑖 is equal
to 𝑞𝑖 , and the constraint (8) requires that the flow 𝑓 (𝑖, 𝑗) from 𝑞𝑖 to
𝑝 𝑗 cannot exceed the density of 𝑝 𝑗 .

For the relaxed EMD problem, Atasu and Mittelholzer [5] pro-
posed a Iterative Constrained Transfers (ICT) algorithm to find the
minimum-cost (optimal) flow. The key idea is to find the optimal
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Figure 11: TICT flow.

Algorithm 2: CandidatesGen(𝑄,D)
Input:𝑄 : query dataset, D: dataset repository
Output:𝐶 : candidate set

1 𝑇 ← Create the tree for D ;
2 𝑃𝑄 ← Initialize a priority queue;
3 𝑚𝑎𝑥𝐿𝐵,𝑚𝑎𝑥𝑈𝐵 ←∞ ;
4 𝑁𝑄 ←Generate the dataset node for𝑄 ;
5 BranchAndBound(𝑁𝑄 ,𝑇 .𝑟𝑜𝑜𝑡, 𝑃𝑄,𝑚𝑎𝑥𝐿𝐵,𝑚𝑎𝑥𝑈𝐵) ;
6 while 𝑃𝑄.𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦 () do
7 𝑁𝑂 ← 𝑃𝑄.𝐷𝑒𝑞𝑢𝑒𝑢𝑒 () ;
8 𝐿𝑖𝑠𝑡 ← All dataset nodes included in 𝑁𝑂 ;
9 foreach 𝑙 ∈ 𝐿𝑖𝑠𝑡 do
10 𝐶.𝑎𝑑𝑑 (𝑙) ;
11 return𝐶 ;
12 Function BranchAndBound(𝑁𝑄 , 𝑁𝑂 , 𝑃𝑄, 𝐿𝐵,𝑈𝐵):

Input: 𝑁𝑄 :query node, 𝑁𝑂 : tree node, 𝑃𝑄 : priority queue,
𝑈𝐵: the upper bound, 𝐿𝐵: the lower bound

13 𝑚𝑎𝑥𝑈𝐵,𝑚𝑎𝑥𝐿𝐵 ← 𝑈𝐵, 𝐿𝐵;
14 if 𝑁𝑂 is a leaf node then
15 𝑁𝑂 .𝑙𝑏, 𝑁𝑂 .𝑢𝑏 ← Compute the lower bound and upper

bound between 𝑁𝑄 and 𝑁𝑂 by Lemma 6.3;
16 if 𝑃𝑄.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 () then
17 𝑃𝑄.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑁𝑂 ) ;
18 if 𝑁𝑂 .𝑙𝑏 ≥𝑚𝑎𝑥𝑈𝐵 then
19 Pruning node 𝑁𝑂 ;
20 else
21 while 𝑁𝑂 .𝑢𝑏 ≤𝑚𝑎𝑥𝐿𝐵 do
22 𝑃𝑄.𝐷𝑒𝑞𝑢𝑒𝑢𝑒 () ;
23 if 𝑃𝑄.𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦 () then
24 𝑚𝑎𝑥𝐿𝐵 ← 𝑃𝑄.ℎ𝑒𝑎𝑑 () .𝑙𝑏 ;
25 𝑚𝑎𝑥𝑈𝐵 ← 𝑃𝑄.ℎ𝑒𝑎𝑑 () .𝑢𝑏 ;
26 else
27 Break;
28 𝑃𝑄.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑁𝑂 ) ;
29 else
30 𝑁𝑂 .𝑙𝑏, 𝑁𝑂 .𝑢𝑏 ← Compute the lower bound and upper

bound between 𝑁𝑄 and 𝑁𝑂 by Lemma 6.4;
31 if 𝑁𝑂 .𝑙𝑏 ≥𝑚𝑎𝑥𝑈𝐵 then
32 Pruning node 𝑁𝑂 ;
33 else
34 𝑁𝐿, 𝑁𝑅 ←The left and right child nodes of 𝑁𝑂 ;
35 BranchAndBound(𝑁𝑄 , 𝑁𝐿, 𝑃𝑄,𝑚𝑎𝑥𝐿𝐵,𝑚𝑎𝑥𝑈𝐵) ;
36 BranchAndBound(𝑁𝑄 , 𝑁𝑅, 𝑃𝑄,𝑚𝑎𝑥𝐿𝐵,𝑚𝑎𝑥𝑈𝐵) ;

flow iteratively for each 𝑞𝑖 ∈ q, i.e., moving all density of 𝑞𝑖 to the
nearest 𝑝 𝑗 , under the flow constraints (7) and (8).

For the sake of illustration of ICT flow and TICT flow, 𝑅(𝑖)
denotes the remaining density of 𝑞𝑖 after the density transfer from
𝑞𝑖 to 𝑝 𝑗 , 𝐷 ( 𝑗) denotes the desired density of 𝑝 𝑗 . We initialize ∀𝑖 ∈
[1,𝑚], 𝑗 ∈ [1, 𝑛]: 𝑅(𝑖) = 𝑞𝑖 and 𝐷 ( 𝑗) = 𝑝 𝑗 . Next, we present the
formal definition of the ICT flow.

Definition 7. For ∀𝑖 ∈ [1,𝑚], the ICT flow is distributed in
ascending order of 𝑑 (𝑖, 𝑗) as:

𝑓 (𝑖, 𝑗) =
{

𝑝 𝑗 , 𝑖 𝑓 𝑅(𝑖) > 𝑝 𝑗

𝑅(𝑖), 𝑒𝑙𝑠𝑒

The remaining density 𝑅(𝑖) is defined as:

𝑅(𝑖) =
{
𝑅(𝑖) − 𝑓 (𝑖, 𝑗), 𝑖 𝑓 𝑅(𝑖) > 𝑝 𝑗

0, 𝑒𝑙𝑠𝑒

The ICT flow ensures that the density of q is fully transferred to
its corresponding nearest neighbor 𝑝 𝑗 in p. We use a toy example
to illustrate the difference between EMD optimal flow and ICT flow.
In Figure 9, the numbers 1 to 6 at the bottom of the horizontal
line denote the position in one dimensional feature space, and the
ground distance between position 𝑖 and 𝑗 is simply defined as |𝑖 − 𝑗 |,
i.e., 𝑑 (2, 1) = |3 − 2| = 1. The density of each bin is represented
by the numbers in the bin. Figure 9 illustrates a minimum cost
flow between q and p under the EMD constraints, and their EMD
distance is 0.2 × 0 + 0.3 × 3 + 0.3 × 3 + 0.2 × 2 = 2.2.

Figure 10 shows the ICT flow between two histograms q and p.
Specifically, the ICT algorithm first ranks the 𝑑 (1, 𝑗) in ascending
order according to their ground distance, i.e., 𝑑 (1, 1) ≤ 𝑑 (1, 2) ≤
𝑑 (1, 3), then transfers themin(𝑞1, 𝑝1) density from 𝑞1 to 𝑝1. At this
time, the remaining density of 𝑞1 is 0.3, which is transferred to 𝑝2.
When the remaining density of 𝑞1 is 0, the density of 𝑞2 and 𝑞3 is
transferred sequentially according to the same transfer rules. In this
way, the flow cost is 0.2× 0+ 0.3× 3+ 0.2× 1+ 0.1× 2+ 0.2× 1 = 1.5.

However, the lower bound generated by the ICT algorithm is
still not tight enough. In Figure 10, we can see that the histogram
generated by the ICT algorithm is significantly different from the
target histogram p. To obtain a tighter “bound”, we further pro-
pose a tighter ICT (TICT) algorithm. Next, we present the formal
definition of the TICT flow.

Definition 8. For ∀𝑖 ∈ [1,𝑚], the TICT flow is distributed in
ascending order of 𝑑 (𝑖, 𝑗) as:

𝑓 (𝑖, 𝑗) =
{
𝐷 ( 𝑗), 𝑖 𝑓 𝑅(𝑖) > 𝐷 ( 𝑗),
𝑅(𝑖), 𝑒𝑙𝑠𝑒

After the density transfers, the desired density 𝐷 ( 𝑗) is defined as:

𝐷 ( 𝑗) =
{ 0, 𝑖 𝑓 𝑅(𝑖) > 𝐷 ( 𝑗)
𝑝 𝑗 , 𝑒𝑙𝑠𝑒
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The remaining density 𝑅(𝑖) is defined as:

𝑅(𝑖) =
{
𝑅(𝑖) − 𝐷 ( 𝑗), 𝑖 𝑓 𝑅(𝑖) > 𝐷 ( 𝑗)

0, 𝑒𝑙𝑠𝑒

Algorithms 3 shows the process of the TICT algorithm. For
each 𝑞𝑖 , we first compute the distance between 𝑞𝑖 and 𝑝 𝑗 ( 𝑗 =

[1, 2, . . . , 𝑛]), then construct a min-heap over 𝑛 distance values in
ascending order (see Line 3 to Line 6). Secondly, we find the indices
(𝑖, 𝑗) of the smallest distance from the min-heap and transfer the
density from 𝑞𝑖 to 𝑝 𝑗 under the capacity constraints, until the re-
maining density of 𝑞𝑖 equals 0 (see Line 8 to Line 18). Note that
after the density of 𝑞 𝑗 is satisfied, we change its density to 0, which
prevents continual transfer density to those bins that already satisfy
the target density (see Line 16).
Complexity Analysis. For ∀𝑞𝑖 ∈ q, we first compute the ground
distance between 𝑞𝑖 and all 𝑝 𝑗 ( 𝑗 ∈ [1, 𝑛]). Then we construct
the min-heap according to the 𝑑 (𝑖, 𝑗), so the time complexity is
𝑂 (𝑛 log𝑛). As q = {𝑞1, 𝑞2, . . . , 𝑞𝑚}, the above step needs to be
executed 𝑚 times. Thus the overall time complexity of TICT is
𝑂 (𝑚𝑛 log𝑛).

Next, we prove that the TICT boundmust be greater than or equal
to the ICT lower bound. In the RDM problem, the ICT algorithm
iteratively computes the minimum flow cost on the premise of
satisfying all RDM constraints by a greedy strategy, i.e., the ICT
algorithm can obtain the minimum value of the RDM problem.
Since the flow generated by the TICT is a feasible solution for the
RDM problem, the TICT bound must be greater than or equal to
the ICT lower bound.

Figure 11 illustrates the TICT flow generated by the TICT algo-
rithm. After ranking 𝑑 (1, 𝑗) in ascending order according to their
ground distance, the TICT algorithm first transfers min(𝑞1, 𝑝1) =
0.2 density from 𝑞1 to 𝑝1 and min(𝑅1, 𝑝2) = 0.3 density from 𝑞1 to
𝑝2. Since the target density of 𝑝1 and 𝑝2 has been satisfied, other
bins cannot transfer density to 𝑝1 and 𝑝2. Thus, the density of 𝑞2 is
transferred to 𝑝3, even though 𝑝3 is not the nearest neighbor. The
flow cost of TICT is 0.2 × 0 + 0.3 × 3 + 0.3 × 3 + 0.2 × 2 = 2.2.

It is important to note that in theory the TICT is not a valid
lower bound for EMD. However, we observe in our experiments
that the TICT is almost always smaller than the EMD and is tighter
than the ICT [5]. In Figure 12, we randomly select a set of samples
and plot the differences between EMD and TICT and between EMD
and ICT. The plot shows that the TICT is tighter than the ICT. In
the one case where TICT is not a valid lower bound, the value of
TICT is still very close to EMD.

Algorithm 4 shows the process of the top-𝑘 EMD search in detail.
We first generate the candidate set 𝐶 by Algorithm 2 (see Line 2).
Then, we initialize a null priority queue 𝑃𝑄 and an infinite filtering
threshold 𝜏 . For all datasets in the candidate set, we compute the

Algorithm 3: TICT(q, p)
Input: q: Z-order histogram of the dataset𝑄 , p: Z-order histogram

of the dataset 𝑃
Output: B: TICT bound

1 𝐵 ← 0 ;
2 foreach 𝑞𝑖 ∈ q do
3 𝐻 ← Initialize a min-heap;
4 foreach 𝑝 𝑗 ∈ p do
5 𝑑 (𝑖, 𝑗) ← Compute the distance between 𝑞𝑖 and 𝑝 𝑗 ;
6 𝐻.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑑 (𝑖, 𝑗)) ;
7 𝑑 (𝑖, 𝑗) ← 𝐻.𝑝𝑜𝑝 () ;
8 while 𝑞𝑖 > 0 do
9 if 𝑞𝑖 ≤ 𝑝 𝑗 then
10 𝑓 ← 𝑞𝑖 ;
11 𝑞𝑖 ← 0;
12 𝐵 ← 𝑐𝑜𝑠𝑡 + 𝑓 × 𝑑 (𝑖, 𝑗) ;
13 else
14 𝑓 ← 𝑝 𝑗 ;
15 𝑞𝑖 ← 𝑞𝑖 − 𝑓 ;
16 𝑝 𝑗 ← 0;
17 𝐵 ← 𝑐𝑜𝑠𝑡 + 𝑓 × 𝑑 (𝑖, 𝑗) ;
18 𝑑 (𝑖, 𝑗) ← 𝐻.𝑝𝑜𝑝 () ;
19 return 𝐵;

Algorithm 4: TopKSearch(𝑄,𝑘,D)
Input:𝑄 : query dataset, 𝑘 : number of results, D: data repository
Output: 𝐿: result list

1 q← Generate the Z-order histogram of𝑄 ;
2 𝐶 ← CandidatesGen(𝑄,D) ;
3 𝑃𝑄 ← Initialize a priority queue;
4 𝜏 ←∞;
5 foreach 𝑐 ∈ 𝐶 do
6 c← Generate the Z-order histogram of 𝑐 ;
7 𝐵 ← 𝑇 𝐼𝐶𝑇 (q, c) ;
8 𝑃𝑄.𝑖𝑛𝑠𝑒𝑟𝑡 (c, 𝐵) ;
9 while 𝑃𝑄.𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦 () do
10 (c, 𝐵) ← 𝑃𝑄.𝐷𝑒𝑞𝑢𝑒𝑢𝑒 () ;
11 if 𝐿.𝑠𝑖𝑧𝑒 () < 𝑘 then
12 𝑒 ← Compute the exact EMD between q and c;
13 𝐿.𝑖𝑛𝑠𝑒𝑟𝑡 (c) ;
14 𝜏 ← min(𝜏, 𝑒) ;
15 else
16 if 𝐵 < 𝜏 then
17 𝑒 ← Compute the exact EMD between q and c;
18 if 𝑒 < 𝜏 then
19 𝐿.𝑝𝑜𝑝 () ;
20 𝐿.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑐) ;
21 else
22 Break;
23 return 𝐿;

TICT bounds and insert them into 𝑃𝑄 in ascending order (see Line 5
to Line 8). Next, we traverse the dataset in the priority queue. When
the length of the result list is less than 𝑘 , we directly compute
the exact EMD and update the threshold (see Line 11 to Line 14).
Subsequently, if the TICT bound of the candidate dataset is less



Table 3: Details of four spatial data repositories.
Data repository Storage (GB) Number of datasets Number of points Coordinates range

Argoverse 16.86 205,942 [157, 3394] [(-102.43, 552.15), (4798.03, 4099.93)]
Trackable 4.48 66,380 [1, 2,223,200] [(−179◦98′,−78◦20′), (179◦99′, 74◦63′)]

Identifiable 19.64 235,483 [1, 3,043,935] [(−180◦00′,−90◦00′), (179◦99′, 90◦00′)]
Public 29.43 546,193 [1, 3,747,735] [(−180◦00′,−84◦14′), (179◦99′, 90◦00′)]

Table 4: Parameter settings.
Parameter Settings

𝑘 : number of results {5, 8, 10, 13, 15, 20}
𝑠: number of datasets {0.2, 0.4, 0.6, 0.8, 1} ×|D|
𝜃 for Argoverse {5, 6, 7, 8, 9}
𝜃 for others {10, 11, 12, 13, 14, 15 }

than the filtering threshold 𝜏 , the dataset needs to be verified (see
Line 16 to Line 20); otherwise, the dataset and subsequent candidate
datasets are filtered without computing the exact EMD (see Line 22).

7 EXPERIMENTS
We first introduce the experimental settings. Then, we evaluate the
efficiency of our proposed DBF framework compared with three
state-of-the-art methods, which will be elaborated on later. The
evaluation mainly covers the following aspects: 1) the performance
of our data modeling approach; 2) the validity of our proposed TICT
bound; and 3) the efficiency of the DBF framework under various
parameters.

7.1 Settings
7.1.1 Datasets. We evaluate our DBF framework on four real-
world spatial data repositories. Argoverse3 is a widely used self-
driving dataset. The other three are public GPS datasets we collected
from OpenStreetMap4, which records real geographic datasets from
the world.

We show the details of these four spatial data repositories in
Table 3, which covers the storage capacity, the number of datasets,
the number of points, and the range of coordinates. Figure 13 shows
the distribution of dataset scale in four data repositories. Since the
number of points in datasets ranges from one to several million,
we only present the points distribution of 90% of the datasets in
Trackable, Identifiable, and Public. In addition, we show the
heatmaps of four data repositories in the appendix of our technical
repore [55].

7.1.2 Implementation. We implement all algorithms in Java 1.8 and
run all experiments on a 10-core Intel(R) Xeon(R) Silver 4210 CPU
@ 2.20GHZ processor, with 376G memory. The implementation
code and guidelines can be obtained on the Github5.

7.1.3 Query Generation. We randomly select 10 datasets from each
data repository as query datasets to search the remaining datasets
and report the average running time of these 10 queries. To prove
the validity of our approach in data modeling, index structure,
3https://www.argoverse.org
4https://www.openstreetmap.org/traces
5https://github.com/yangwenzhe/DBF/

and top-𝑘 search, we vary several key parameters to observe the
performance of our method compared with several state-of-the-
art methods. These parameters include the number of results (𝑘),
resolution (𝜃 ), and the scale of datasets (𝑠). The coordinates of points
in Argoverse are fixed coordinate values relative to a single city,
while in the other three datasets, the range of points is worldwide.
Thus, we select different resolution ranges for Argoverse and the
other three spatial datasets. We summarize the parameter settings
in Table 4, and the default value for each parameter is underlined.

7.2 Efficiency of the DBF Framework
Spatial Data Storage and Compression. In the process of spatial
data modeling, we store these Z-order histograms in memory after
converting the spatial datasets to Z-order histograms. Thus, we first
test the memory space change caused by altering the resolution 𝜃 .
The left of Figure 14 shows that the required storage space gradually
decreases as the resolution decreases. This is because when we use a
lower resolution, the whole space is divided coarse-grained, which
results in a reduction in the number of bins of Z-order histogram
generated per dataset.

We then compare the running time of Z-order histograms gen-
erated by the Z-order pooling method and scanning method. The
experimental results are shown in the right of Figure 14. The first
column for each data repository shows the running time of data
modeling by scanning all datasets for the first time. As the resolu-
tion decreases, we compare the running time of modeling by using
the Z-order pooling method or rescanning all datasets. We observe
that our Z-order pooling method achieves significant speed-up by
order of magnitude. This is because the Z-order pooling method
only needs to scan all datasets once, which reduces the time of
repeatedly scanning all datasets in the data repository.
Efficiency of the TICT Bound. To verify the efficiency of our
proposed TICT bound, we compare the TICT bound with three
state-of-the-art lower bounds proposed over the past few years in
terms of both accuracy and running time:

• ICT [5]: The ICT algorithm has been introduced in Sec-
tion 6.4, whose key idea is to iteratively compute the mini-
mum transfer cost for each bin of histogram q.
• IM-Sig∗ [46]: The IM-Sig∗ constructs a𝑚×𝑛 distance matrix
for two histograms q and p, and extracts the smallest dis-
tance from the matrix to transfer the density until all density
in p is transferred to q.
• RWMD [27]: The RWMD provides a lower bound of EMD
by computing the dot-product between 𝑝𝑖 (𝑖 = [1, 2, . . . ,𝑚])
and the minimum value of 𝑖-th row of distance matrix.

We use the classic simplex algorithm [17] to compute the exact
EMD. However, due to the high complexity of EMD, it is not feasible
to perform the pairwise EMD computation for all datasets. Thus,

https://www.argoverse.org
https://www.openstreetmap.org/traces
https://github.com/yangwenzhe/DBF/
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Figure 13: Dataset distributions in four data repositories.
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Figure 15: The average error comparison
of several bounds.
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Figure 16: The running time comparison
of several bounds.
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Figure 17: The refinement number com-
parison of several bounds.

we randomly select 100 pairs of datasets in four data repositories
to compare the average error between several bounds and exact
EMD. We use the Euclidean distance as the ground distance. Fig-
ure 15 shows the average error of the bounds computed by the
four algorithms in four data repositories. We observe that our TICT
achieved the smallest average error. The ICT and IM-Sig∗ have the
same average error, and the RWMD is rather loose.

Next, Figure 16 presents the running time of the four methods
in four data repositories. We observe that our method is faster than
IM-Sig∗ and RWMD. Although the running time of TICT is not
always faster than ICT, TICT is closer to the exact EMD. Finally, we
use the four bounds to compare the number of datasets that need
validation in the refinement stage. In Figure 17, we can see that
compared with the other three lower bounds, our method achieves
stronger filtering power. The main reason is that the TICT has the
smallest average error relative to the exact EMD, which helps us
filter out more candidate datasets.
Efficiency of the Index Structure.We compare the running time
on different stages of DBF framework and the SAR search based on
TICT, ICT, and IM-Sig∗, respectively. We do not show the RWMD
results in the subsequent figures. The main reason is that RWMD is
too loose relative to exact EMD, which results in the overall search
time of RWMD being far more than the other baselines.

We intuitively show each stage’s average running time, which
contains the index construction stage, filtering stage, and refine-
ment stage. In Figure 18, we can observe that the index construction
is very fast, which can be completed in less than one second. We can
also see that the filtering of the DBF framework is faster than the
other three methods by one order of magnitude. Such a significant

improvement shows that using the pooling-based index structure
to prune datasets in batch is essential in the coarse-grained filtering
stage. In addition, as shown in Figure 18, the refinement is the
most time-consuming stage, which increases one to two orders of
magnitude compared with the other three stages. However, the
refinement time of our DBF framework is still less than the other
three methods. Since it has considerable filtering power and faster
filtering, DBF achieves the best top-𝑘 search performance.
Efficiency of the Top-𝑘 Search. From the results in Figure 19,
we can see that our DBF framework consistently outperforms the
other three methods. The reason is that our framework can prune
datasets in batch with the help of our pooling-based index structure,
which avoids pairwise bound computation in the filtering stage. In
addition, we can see that the filtering based on the TICT without
index has better performance than that based on ICT and IM-Sig∗.
This is because the TICT is closer to the exact EMD, resulting in
more datasets being filtered out in the filtering stage. Thus, the
search process could terminate faster than that of ICT and IM-Sig∗.
Top-𝑘 Search Efficiency under Different Resolutions. In the
data modeling stage, we divide the whole space into a 2𝜃 × 2𝜃
grid and generate the Z-order histogram for each dataset. Thus,
the number of bins in each Z-order histogram depends on the
resolution 𝜃 . We increase 𝜃 to investigate the search performance
of the DBF framework compared with the other three methods.
From the results in Figure 20, we observe that the search time of the
four methods increases gradually as the resolution increases. The
reason is that each dataset is divided into finer granularity with
the increase of resolution, increasing the number of histogram bins.
Another finding is that our DBF framework is still faster than the
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Figure 18: The running time comparison of different stages.
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Figure 19: Effect of the top-𝑘 search with the increase of 𝑘 .
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Figure 20: Effect of the top-𝑘 search with the increase of 𝜃 .

10
3

10
4

10
5

10
6

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

T
im

e
 (

m
s
)

     Argoverse                Trackable                      Identifiable                        Public       

DBF TICT ICT IM-Sig*

Increasing the Scale of Exact Search

10
1

10
2

10
3

10
4

10
5

10
6

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

T
im

e
 (

m
s
)

     Argoverse                Trackable                      Identifiable                        Public       

DBF TICT ICT IM-Sig*

Increasing the Scale of Approximate Search

Figure 21: Effect of the top-𝑘 search with increasing dataset scale.

other three methods under different resolutions, which proves that
our DBF framework is robust to different resolutions.
Scalability. Finally, we test the scalability of our framework. We
vary the dataset size of four data repositories from 20% to 100%
and report the average search time. The experimental results of
the exact search in four data repositories are shown in the left of
Figure 21. In addition, we use the bound as approximate EMD to
quickly obtain the search results, suitable for the situation requiring
high query speed. The right of Figure 21 shows the performance
of the approximate search. In Figure 21, we can see that no matter
how the size of the dataset increases, our method can maintain a
relatively faster search speed than other methods.
Additional Experiments.We conduct more experiments to verify
the efficiency of our DBF framework. First, we conduct experiments
on the higher-dimensional data repository to show that our method
is also applicable in higher-dimensional space. Second, we conduct
the cross repository search experiments to compare the running
time of four methods. Third, to support interactive search, we use
the TICT bound as an approximate EMD and compare its running
time and accuracy with other approximate methods. Finally, we
investigate the effect of data skew on running time and accuracy.

Due to the space limit, we place these experimental results in the
appendix of technical report [55].

8 CONCLUSIONS
This paper mainly studied the EMD-based spatial dataset search.We
presented DBF, a dual filtering framework to accelerate the similar-
ity search. First, we showed how to represent the spatial datasets by
Z-order histograms. Then, we designed a Z-order pooling method
to organize those datasets as nodes in a tree-structured index. Next,
we deduced pooling-based lower and upper bounds and designed
pruning strategies combined with index structure to filter datasets
in batch. Subsequently, we proposed a TICT bound based on the
ICT lower bound to conduct SAR search, further improving the
filtering ratio. The experimental results showed that our framework
is more efficient than the state-of-the-art methods. In future, we
will explore the spatial dataset search to return the subset of the
spatial dataset that is the most similar to the given query dataset.
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A APPENDIX
A.1 The Proof of Lemma 6.1
In the appendix, we prove the pooling cost 𝜁 (q, q′) equals the
𝐸𝑀𝐷 (q, q′) in Lemma 6.1. Given two histograms q and q′, there
is only one way to transfer q to q′ since there is only one non-
zero entry in q′. Hence, the pooling-based flow is the only feasible
solution of the EMD problem, and the 𝜁 (q, q′) must be equal to
𝐸𝑀𝐷 (q, q′).

A.2 The Proof of Lemma 6.2
We prove the pooling-based lower and upper bounds in Lemma 6.2.
First, based on the triangle inequality, we can obtain:

𝐸𝑀𝐷 (q′, p) ≤ 𝐸𝑀𝐷 (q′, p′) + 𝐸𝑀𝐷 (p, p′) (9)
𝐸𝑀𝐷 (q, p) ≤ 𝐸𝑀𝐷 (q′, p) + 𝐸𝑀𝐷 (q, q′) (10)

Substituting Inequation (9) into Inequation (10), we can obtain:

𝐸𝑀𝐷 (q, p) ≤ 𝐸𝑀𝐷 (q′, p′) + 𝐸𝑀𝐷 (q, q′) + 𝐸𝑀𝐷 (p, p′) (11)
Substituting 𝐸𝑀𝐷 (q, q′) = 𝜁 (q, q′) into Inequation (11), we can
obtain Inequation (5) in Lemma 6.2. Similarly, based on another
triangle inequality, we can get a lower bound of 𝐸𝑀𝐷 (q, p) through
𝐸𝑀𝐷 (q′, p):

𝐸𝑀𝐷 (q′, p) ≥ |𝐸𝑀𝐷 (q′, p′) − 𝐸𝑀𝐷 (p, p′) | (12)
𝐸𝑀𝐷 (q, p) ≥ |𝐸𝑀𝐷 (q′, p) − 𝐸𝑀𝐷 (q, q′) | (13)

Substituting Inequation (12) into Inequation (13), we can obtain:
𝐸𝑀𝐷 (q, p) ≥ ||𝐸𝑀𝐷 (q′, p′) − 𝐸𝑀𝐷 (p, p′) | − 𝐸𝑀𝐷 (q, q′) | (14)

In addition, we can also get another lower bound of 𝐸𝑀𝐷 (q, p)
through 𝐸𝑀𝐷 (q, p′):

𝐸𝑀𝐷 (q, p′) ≥ |𝐸𝑀𝐷 (q′, p′) − 𝐸𝑀𝐷 (q, q′) | (15)
𝐸𝑀𝐷 (q, p) ≥ |𝐸𝑀𝐷 (q, p′) − 𝐸𝑀𝐷 (p, p′) | (16)

Substituting Inequation (15) into Inequation (16), we can obtain:
𝐸𝑀𝐷 (q, p) ≥ ||𝐸𝑀𝐷 (q′, p′) − 𝐸𝑀𝐷 (q, q′) | − 𝐸𝑀𝐷 (p, p′) | (17)

Combining Inequation (14) and Inequation (17), we can obtain:
𝐸𝑀𝐷 (q, p) ≥ min{| |𝐸𝑀𝐷 (q′, p′) − 𝐸𝑀𝐷 (q, q′) | − 𝐸𝑀𝐷 (p, p′) |,

| |𝐸𝑀𝐷 (q′, p′) − 𝐸𝑀𝐷 (p, p′) | − 𝐸𝑀𝐷 (q, q′) |}
(18)

Substituting 𝐸𝑀𝐷 (p, p′) = 𝜁 (p, p′) and 𝐸𝑀𝐷 (q, q′) = 𝜁 (q, q′)
into Inequation (18), we can obtain Inequation (6) in Lemma 6.2.

A.3 The Proof of Lemma 6.3
Based on the proof of Lemma 6.2, we can get the lower and upper
bounds of 𝐸𝑀𝐷 (q, p). Since the exact EMD between two datasets
after pooling operation equals the ground distance 𝑑 (𝑞, 𝑝). Substi-
tuting 𝐸𝑀𝐷 (q′, p′) = 𝑑 (𝑞, 𝑝), 𝜁 (q, q′) = 𝛾 (𝑞) and 𝜁 (p, p′) = 𝛾 (𝑝)
into Lemma 6.2, we can obtain Lemma 6.3.

A.4 The Proof of Lemma 6.4
Here we show that the lower and upper bounds between the
query node 𝑁𝑄 and the internal node 𝑁𝑂 in Lemma 6.4. By
using Lemma 6.3, we obtain that the minimum lower bound
is the 𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑃 ) and the maximum upper bound is the
𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑅) between 𝑁𝑄 and any dataset node in the right
of Figure 8. Thus, the 𝐸𝑀𝐷 between 𝑁𝑄 and any dataset node
can be bounded in the range: [𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑃 ), 𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑅)], i.e.,

𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑃 ) ≤ 𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑂 ) ≤ 𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑅). Based on
Lemma 6.3, we can get

𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑅) ≤ 𝑑 (𝑞, 𝑟 ) + 𝛾 (𝑞) + 𝛾 (𝑟 )
𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑃 ) ≥ min{| |𝑑 (𝑞, 𝑝) − 𝛾 (𝑞) | − 𝛾 (𝑝) |,

| |𝑑 (𝑞, 𝑝) − 𝛾 (𝑝) | − 𝛾 (𝑞) |}
(19)

Since𝑁𝑃 and𝑁𝑅 are two dataset nodes in𝑁𝑂 , it implies that𝛾 (𝑜) ≥
𝛾 (𝑝) and 𝛾 (𝑜) ≥ 𝛾 (𝑟 ). Then, we get:

𝑑 (𝑞, 𝑟 ) + 𝛾 (𝑟 ) ≤ 𝑑 (𝑞, 𝑜) + 𝛾 (𝑜)
𝑑 (𝑞, 𝑝) − 𝛾 (𝑞) ≥ 𝑑 (𝑞, 𝑜) − 𝛾 (𝑞)
𝑑 (𝑞, 𝑝) − 𝛾 (𝑝) ≥ 𝑑 (𝑞, 𝑜) − 𝛾 (𝑜)

(20)

Substituting Inequation (20) into Inequation (19), we can obtain:
𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑅) ≤ 𝑑 (𝑞, 𝑜) + 𝛾 (𝑞) + 𝛾 (𝑜)

𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑃 ) ≥ min{| |𝑑 (𝑞, 𝑜) − 𝛾 (𝑞) | − 𝛾 (𝑜) |,
| |𝑑 (𝑞, 𝑜) − 𝛾 (𝑜) | − 𝛾 (𝑞) |}

Due to 𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑃 ) ≤ 𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑂 ) ≤ 𝐸𝑀𝐷 (𝑁𝑄 , 𝑁𝑅), we
can obtain the above Lemma 6.4.

A.5 Resolution Selection
In the data modeling stage, we generate the distribution of the
dataset by dividing the space into a 2𝜃 × 2𝜃 grid. The distribution
of points in each dataset is not uniform in most cases. Too coarse-
grained space partition may lead to most of the points gathering
in one cell in the grid, which will affect the accuracy of similarity
computation between two datasets. In contrast, too fine-grained
space partition increases the number of histogram bins. Thus, an
appropriate grid size is critical to the similarity computation.

In this paper, we investigate twomethods to select an appropriate
resolution. First, the point of the spatial dataset denotes a specific
location on the earth’s surface, e.g., each point has a longitude
and latitude in the Trackable data repository. As the length of
one degree of longitude or latitude is about 111 kilometers, we
use the distance sampling method to obtain the resolution. For
example, we can divide the global region into a 213 × 213 grid, with
each entry/cell covering an area of about 5𝑘𝑚 × 2.5𝑘𝑚. Distance
sampling is a commonly used method because it can accurately
reflect the spatial density distribution of the spatial dataset, which
has been applied in multiple fields, such as range queries [48, 50, 56],
deep metric learning [3, 35], and spatial privacy protection [10].

In addition, we explore a dynamic way of choosing the grid size
based on the data distribution. Although the high resolution avoids
the uneven division of points in the dataset and improves the fitting
degree between the generated Z-order histogram and the actual
dataset distribution, it leads to an increase in the time cost of data
modeling and EMD computation. Thus, the principle of dynamic
resolution setting is to choose a grid with a resolution as low as
possible given that it does not significantly impact accuracy.

Figures 22 and 23 show the approximate search time and accuracy
as resolution increases. We can observe that when the resolution
is small, increasing the resolution can significantly improve the
accuracy of the approximate search. However, when the resolution
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Figure 22: The runtime comparison of the approximate search with the increase of 𝜃 .
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Figure 23: The accuracy comparison of the top-𝑘 search with the increase of 𝜃 .
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Figure 24: The heatmaps of four data repositories.
increases, the running time increases significantly, and the accu-
racy tends to be stable. Thus, we can first select a small resolution
according to the scope of the data domain. Then, we increase the
resolution to calculate approximate search accuracy until the accu-
racy tends to be stable or reaches a certain threshold, which is the
appropriate resolution.

A.6 Additional Experimental Results
Heatmaps of Four Data Repositories. Figure 24 presents the
dataset distribution heatmaps, showing the density of data points in
the space. The color of a region in the heatmap represents a number
in the color bar, where dark red indicates a dense distribution of
datasets in this region, and light red indicates the opposite.
Effect of Search on Higher-Dimensional Repository.We also
conduct experiments on a higher-dimensional dataset to investigate
the search performance of the four methods. Here we choose the
Argoverse repository since it contains a temporal dimension in
addition to the 2D coordinates. We first show the running time of
top-𝑘 search with the increase of 𝑘 in Figures 25. We can observe
that our DBF framework still has the best performance among all
methods. Combined with the results of the top-𝑘 search on the
2D Argoverse in Figure 19, we can observe that the increase of
dimension has little influence on the performance of the top-𝑘
search.

In addition, we explore the search performance in the 3D
Argoverse as the resolution increases. The result is shown in Fig-
ure 26. We find that as resolution increases, the running time of the
search gradually increases, which is consistent with the conclusion
on the 2D Argoverse in Figure 20. Since it is time-consuming to
perform the exact search at high resolution, we also show the run-
ning time of the approximate search with the resolution increasing.
From Figure 27 we observe that our DBF framework can complete
the search process very quickly. Overall, these experimental results
verify that our framework still has great search performance on
higher-dimensional data repositories.
Effect of Cross Repository Search. In the previous experiment,
we randomly select the query datasets from the data repository and
perform the similarity search in the same data repository. Next, we
perform the cross-repository similarity search experiments. Here
we choose Trackable, Identifiable, and Public data reposito-
ries, all of which contain datasets worldwide. This is because cross-
repository experiments require data modeling based on the same
space and resolution. Otherwise, the histogram coordinates of dif-
ferent data repositories are not in the same coordinate system so
the similarity measurement would be meaningless.

Figure 28 shows the experimental results of randomly selecting
10 query datasets from the Trackable data repository and then
performing a top-𝑘 search in the Identifiable, Public, and the
aggregate repository containing the three repositories, respectively.
We can observe that our DBF framework shows the best search
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Figure 25: Effect of the top-𝑘 search with
𝑘 increasing in 3𝐷 datasets.
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Figure 26: Effect of the exact search with
𝜃 increasing in 3𝐷 datasets.
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Figure 27: Eeffect of the approximate
search with 𝜃 increasing in 3𝐷 datasets.
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Figure 28: Effect of the top-𝑘 search with the increase of 𝑘 where the query datasets are from the Trackable data repository.
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Figure 29: Effect of the top-𝑘 search with the increase of 𝑘 where the query datasets are from the Identifiable data repository.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

5 8 10 13 15 20

T
im

e
 (

s
)

From Public to Trackable

DBF
TICT

ICT
IM-SIG*

Increasing k of Top-k Search

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 8 10 13 15 20

T
im

e
 (

s
)

From Public to Identifiable

DBF
TICT

ICT
IM-SIG*

Increasing k of Top-k Search

 500

 1000

 1500

 2000

5 8 10 13 15 20

T
im

e
 (

s
)

From Public to Three Repositories

DBF
TICT

ICT
IM-SIG*

Increasing k of Top-k Search

Figure 30: Effect of the top-𝑘 search with the increase of 𝑘 where the query datasets are from the Public data repository.

performance in both the other two repositories and in the aggregate
repository. In addition, we also find that the search time in the
Identifiable is less than the time in the Public, and the search
time in the aggregate repository is the highest after horizontal
comparisons.

We also randomly select the query datasets from the
Identifiable and Public repositories, respectively, and conduct
experiments on the other two repositories and the aggregate repos-
itory. The experimental results are shown in Figures 29 and 30. We

can observe that the DBF framework consistently outperforms the
other three methods in all cross-repository search scenarios. In
addition, the search time of the four methods is positively corre-
lated with the number of datasets in the data repository. This is
mainly because the higher the number of datasets in the repository,
the more datasets need to be filtered and verified in the similarity
search.
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Figure 31: The runtime comparison of the top-𝑘 search with the increase of 𝑘 .
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Figure 32: The accuracy comparison of the top-𝑘 search with the increase of 𝑘 .

Effect of the Top-𝑘 Approximate Search. From Figure 18 we
have observed that the refinement stage is themost time-consuming
in the whole exact search process. To support interactive search,
we use the EMD bound as approximate EMD to perform the simi-
larity search experiment. First, we show the experimental results
of the top-𝑘 search as 𝑘 increases in Figure 31 to compare the run-
ning time of exact search and approximate search. We find that
the approximate search using IM-Sig∗ [46] bound is significantly
slower than the other three approximate methods. When setting
𝑘 = 5 in the Trackable, Identifiable, and Public datasets, the
approximate search using IM-Sig∗ bound is even slower than the
exact search using the DBF framework.

The main reason is that the running time of IM-Sig∗ bound
is the slowest compared with the other three bounds (as shown
in Figure 16). Therefore, pairwise IM-Sig∗ bound computation is
very time-consuming. In contrast, our DBF framework can avoid
pairwise bound computation by pooling-based filtering. Second,
Figure 32 shows the accuracy comparison of the top-𝑘 search with
the increase of 𝑘 . Combined with Figures 31 and 32, we can ob-
serve that the approximate search using the DBF framework is
significantly faster, running in seconds, and are more accurate.
Effect of Data Skew on Runtime. To explore the effect of data
skew, we compare the running time of the four methods as query
skewness increases. Figure 24 in Appendix A.6 visually shows the
distribution of four data repositories. We randomly select datasets
from sparse regions and dense regions to form 50 query sets, and
the number of dense region datasets gradually increases. From
Figure 33 we can see that the query datasets are first composed of
50 datasets from the sparse region, then the query datasets from

the sparse region are gradually reduced, and the datasets from the
dense region are gradually increased until 50 query datasets are all
from the dense region.

Figure 33 shows that as the query gradually skews toward the
dense region, the exact search time gradually increases. The reason
for this is that when the query dataset is from a sparse region, most
datasets can be filtered through our dual filtering framework. Thus,
the number of candidate sets is small, and hence it requires less
time for the exact search. As the number of query datasets from
dense regions increases, the number of candidate datasets is larger,
and there is a higher possibility of overlap between them, so the
search time greatly increases.
Effect of Data Skew on Accuracy. Figure 34 shows that as the
query datasets gradually skew toward the dense region, the ap-
proximate search time is less affected by the query skew, and it
significantly reduces the search time required compared with the
exact search. Correspondingly, Figure 35 shows the accuracy com-
parison of the approximate search as query skew increases. We can
see that the accuracy ratio is also less affected by the query skew,
and our TICT bound has higher accuracy compared with the ICT
and IM-Sig∗. In addition, combining with Figures 34 and 35, we
can observe that our DBF framework completes the whole search
process in about one second and achieves over 70% accuracy.

This is because the refinement stage is omittedwhen using bound
as the approximate EMD; our filtering mechanisms have distinct
advantages by filtering in batch most datasets without requiring
pairwise bound computation. Thus, our DBF framework is much
faster compared with the other three methods. Furthermore, our
TICT bound is closer to the exact EMD. Thus the DBF framework
and TICT-based search show a higher accuracy.
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Figure 33: The runtime comparison of the exact search as the query skew increases, where 𝑠 represents queries from sparse
regions and 𝑑 represents queries from dense regions.
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Figure 34: The runtime comparison of the approximate search as the query skew increases.
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Figure 35: The accuracy comparison of the approximate search as the query skew increases.
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