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This paper studies the problem of fair clustering on heterogeneous information networks (HINs) by considering
constraints on structural and sensitive attributes. We propose a Prerequisite-driven Fair Clustering (PDFC)
algorithm to solve this problem. Specifically, we define the structural constraint on the connection among
nodes in HINs by combining meta-paths and prerequisite meta-paths and introduce Fairlets as the balance
constraint. Under two constraints, we learn node embeddings based on graph models and perform the Cholesky
decomposition to obtain their orthogonal embeddings. We fuse node embeddings under constraints, define the
loss function of PDFC, and perform k-means to achieve clustering. In addition, we design an update strategy
of the adjacency matrix to achieve dynamic PDFC over time. Compared with several fair clustering algorithms
on three real-world datasets, our experimental results verify the effectiveness and efficiency of PDFC.
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1 INTRODUCTION

Biases related to sensitive attributes such as gender, race, and prestige, are well known to drive
differences in scientific output and impact, and these inequalities are widespread in science [40].
Fortunately, fair algorithms have received extensive attention in machine learning and data science,
such as clustering [8, 19, 20, 38, 50], classification [29, 49, 70], ranking [6, 21], outlier detection
[46, 53], among others, which help us eliminate data-inherent bias.
Currently, most studies [2, 3, 7, 8, 19, 24, 38, 72] follow the Fairlets in [20] to deal with the fair

clustering problem of sensitive attributes in Euclidean space. These studies integrate the Fairlets
into the objective of different clustering algorithms to ensure each cluster has a proportional
representation of sensitive attributes. Fair clustering algorithms on graphs require all sensitive
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Fig. 1. A heterogeneous information network.

subgroups to be proportionally represented by nodes in each cluster [22, 37]. For example, fair
graph clustering [37, 39, 48] requires sensitive attributes to be covered in each cluster, which has
been applied to sensitive attribute prediction [11] and friendship recommendations [47]. Several
studies [12, 15] address the fair graph partitioning problem, which ensures that each cluster forms
a connected subgraph and applies it to subgraph partitioning [15].
Although fair algorithms have attracted much attention, only a few studies have considered

eliminating biases toward sensitive attributes via heterogeneous information networks (HINs) [69].
HINs can model real-world data through entity types and their relationships [54]. For example,
Figure 1 shows a HIN that models users (U,⃝), courses (C,□), videos (V,^), and knowledge concepts
(K,△) as different entity types and describes various relations among entities. Zeng et al. [69]
proposed a fair algorithm to mitigate gender bias in automated career counseling, but they did not
consider users’ structural or collaboration fairness in HINs. Inequalities are common in scientific
communities, and most efforts to understand them treat scientists as isolated individuals and ignore
the network effects of collaboration [40]. Different from [69], we study the problem of fair clustering
on HINs, which aims to form k clusters that require structures (e.g., connectivity) and sensitive
attributes to be proportionally represented by nodes and their relations.
Networks (or graphs) may contain latent background knowledge, for example, two nodes may

be cannot-link (in different clusters) or must-link (in the same cluster) [36], and prerequisite or
citation relations. Latent knowledge cannot be captured or directly utilized by vanilla clustering
algorithms. Recently, several studies have utilized them to improve clustering algorithms. For
example, Chatziafratis et al. [17] have implemented clustering with the important prior cannot-link
and must-link information as constraints. Jong et al. [30] utilize prerequisite relations between
knowledge concepts as the prior constraint rule to group users to achieve their knowledge comple-
mentarity. Additionally, meta-paths [56] in HINs can construct the connection among target nodes
via other nodes, which has been applied in clustering [42, 43] and classification [41] tasks. Inspired
by the successful application of prerequisite relations and meta-paths, we consider setting relevant
constraints to ensure a connection between target nodes in HINs.

As shown in Figure 1, we take artificial intelligence (AI) driven database optimization as an example
to describe our study problem. For instance, users want to learn the knowledge of AI-driven query

performance prediction (QPP), but they are not familiar with the knowledge of AI, so AI is the
subsequent knowledge that users need. How can they find latent users with AI knowledge to form
learning groups, or existing algorithms that assign appropriate learning partners to them? In reality,
we can help users find learning partners or groups via potential path information in HINs. In Figure
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1, user U3 has the database knowledge of QPP, and user U4 or U5 knows deep neural networks

(DNN ). Thus, users U4 and U5 can establish the connection via common knowledge of DNN, and
they have the social principle of homophily [31] when participating in activities of groups [65],
which will help them communicate more easily during their learning process. In addition, users
U3 and U4 (U5) can establish another connection through the prerequisite relationship between
QPP and DNN to form learning groups, and they have heterogeneity [28] when participating in the
activities of groups, which helps them to cooperate in the learning process. To represent these two
types of connections among users in HINs, we define meta-paths (Definition 3) and prerequisite
meta-paths (Definition 4), respectively. According to these two definitions, we define structural
constraints (Definition 5) that require each cluster to contain these two types of path information.
In addition, to avoid the unfairness of sensitive attributes, we also follow the Fairlets in [20] to
define balance constraints (Definition 6). Thus, we aim to achieve fair clustering on HINs under
structural and balance constraints in this paper.

Motivated by the above observations, we introduce the objective of Normalized Cut [52] (NCut)
as the objective of our fair clustering under structural and balance constraints. The NCut problem
achieves a balance of clusters by edge weights [58]. Unfortunately, introducing the balance con-
dition makes the NCut problem become NP-hard[14]. Our fair clustering becomes a bi-objective
minimization problem that forms k-fair clusters over a set of 𝑁 target nodes in HINs, which is
also NP-hard [23] when two constraints are considered simultaneously. Therefore, we propose a
Prerequisite-drive Fair Cluster (PDFC) algorithm to solve this problem. Specifically, we utilize an
attention-based embedding learning model (Section 4.2) and graph convolutional networks [35]
to learn the embeddings of nodes under two constraints, respectively. Finally, we transform the
bi-objective minimization into a single-objective minimization problem by unifying the embeddings
of target nodes in HINs, which is used as the loss function of our fair clustering.

The network (graph) data may change over time, such as the node addition, deletion, and update,
which makes previous clustering results invalid. Nevertheless, existing fair clustering algorithms
cannot capture changes in the overall structure of network (graph) data, hence inapplicable to
online fair clustering. Currently, several studies [16, 27, 32, 33, 66] of unfair clustering algorithms
deal with time-varying or streaming data through sliding windowmodels or evolutionary clustering
to achieve dynamic clustering. Consequently, we design an updating strategy of the adjacency
matrix based on sliding window models to set the importance of graph structure updates. Then we
utilize PDFC learning on the updated adjacent matrix to obtain fair clustering. The source code
and data, and other artifacts have been made available 1.

To summarize, this paper makes the following contributions:
• We study the problem of fair clustering on HINs by considering the balanced distribution of
structures and sensitive attributes in clusters. We design a novel specific similarity path, denoted
as the prerequisite meta-path, to construct the connection of target nodes in HINs. We define the
loss function of fair clustering as the objective minimization and explain it is NP-hard (Section 3).
• We propose PDFC. PDFC learns potential embeddings of structural information and sensitive
attribute between nodes, then obtains their orthogonal embeddings as node embeddings under
structural and balance constraints by performing Cholesky decomposition. We convert the bi-
objective into single-objective minimization by concatenating node embeddings (Section 4).
• We design an updating strategy of the adjacency matrix to implement the dynamic PDFC over
time (Section 5).
• We conduct extensive experiments on three real-world datasets to verify the effectiveness and
efficiency of PDFC (Section 6).

1https://github.com/zhang-juntao/PDFC
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2 RELATEDWORK

Fair Clustering. Vanilla clustering algorithms aim to partition unlabeled data into similar groups,
such as 𝑘-means for clustering trajectory [60] and DBSCAN for clustering heterogeneous networks
[18]. Compared with vanilla clustering algorithms, fair clustering not only ensures that unlabeled
data are in similar groups but also focuses on counteracting biases towards sensitive attributes
in clustering results. On the one hand, most studies [2, 3, 7, 8, 19, 24, 38, 72] integrate the Fairlets
of [20] into their clustering objectives (e.g., k-means [61] and k-median [13]) to eliminate biases
toward sensitive attributes in Euclidean space. For example, Bera et al. [8] extended the model
of [20] to get fair clustering algorithms for any p-norm objective to reduce the cost of clustering
if allowing for small additive violations to the fairness constraint. Abraham et al. [3] focused on
fair clustering for multiple sensitive attributes and incorporated a novel fairness loss term, which
nudges the clustering towards fairness on the set of sensitive attributes, into the k-means, called
Fair k-means. Ziko et al. [72] proposed a general framework of fair clustering, which integrates a
Kullback-Leibler fairness term with clustering objectives.
On the other hand, several studies [11, 12, 15, 37, 39, 47, 48] focus on fair clustering on graphs

to eliminate biases inherent against sensitive attributes. For instance, Kleindessner et al. [37] first
tried to incorporate the Fairlets of [20] into the graph-based objective (e.g., spectral clustering [58])
by embedding linear constraints on the graph Laplacian matrix to achieve fair clustering on graph
data. Li et al. [39] proposed FairAdj to empirically learn a fair adjacency matrix by updating the
normalized adjacency matrix while keeping the original graph structure unchanged.
Dynamic Clustering. With the increase of streaming or time-varying data, dynamic clustering or
incremental clustering has attracted extensive attention [18, 66]. Several current studies employ the
sliding window model [10, 32, 33, 44] and evolutionary clustering [5, 16, 27] to realize dynamic or
incremental clustering. Kim et al. [33] presented the DISC, which can carry out the clustering tasks
for streaming data on time without compromising the quality of clustering results or consuming
excessive computational resources. Subsequently, Kim et al. [32] proposed the DenForest, which
can accurately examine whether the underlying graph is being split or not by a new data structure
DenTree, which then determines efficiently and accurately whether a cluster is to be split by a point
removed from the window in logarithmic time.

The evolutionary clustering processing timestamped data to produce a sequence of clusters [16].
Gu et al. [27] proposed DynamicC for clustering in high-velocity dynamic scenarios (continuously
updated, inserted, and deleted.) by previous clustering results. DynamicC observes the cluster
evolution patterns by an existing batch clustering algorithm in the training phase and makes
clustering decisions in reaction to data operations in the prediction phases. You et al. [66] proposed
a Robust Temporal Smoothing Clustering that implements dynamic graph clustering of temporal
networks to overcome the problem of considerable noise during temporal information smoothing,
high time complexity, etc.

Remarks. (1) Most of the existing studies consider the fair clustering of sensitive attributes in
Euclidean space. However, except for [69], few studies consider eliminating biases toward sensitive
attributes using the rich information of HINs. In addition, there is a lack of relevant research on
the structural fairness of graphs or networks; (2) Inspired by the successful application of sliding
window models, we consider capturing the dynamic changes of HINs at different times using the
time-based sliding window model. Then we recalculate the adjacency matrix formed by the target
node at the corresponding time and design an update strategy of the adjacency matrix to expand
PDFC for fair clustering over time.
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3 DEFINITIONS

To represent entities (e.g., user, video) and their relations (e.g., users watch videos), we model them
as a heterogeneous information network (HIN) [26], as shown in Fig. 1. Before defining the fair
clustering problem, we introduce several preliminaries about HINs. Table 1 lists the notations used.

Table 1. Descriptions of notations

Notations Description
G The heterogeneous information network
V, E The set of nodes and the set of edges
T ,R Nodes and edges correspond to the set of entity and relation types
V𝑖 , E𝑗 Set of node and edge in the type T𝑖 and R 𝑗
G𝑆 The network schema of HINs
𝜙 ,𝜓 The node and relation mapping function
P, PP Set of meta-paths and prerequisite meta-paths
R, R𝑝 The composite relation on P and PP
𝐺 = (𝑉 , 𝐸, 𝑋 ) A graph𝐺 is formed by P and PP, 𝑉 is the node set of target entity, 𝐸

is the edge between 𝑉 , and 𝑋 is the feature of 𝑉
A The adjacency matrix of 𝐺
A𝐾𝑖′ ↦→𝐾𝑗 ′ Prerequisite meta-path connection structure
A𝐾𝑖′ , A𝐾𝑗 ′ Meta-path connection structure
C = {𝐶1, ...,𝐶𝑘 } k disjoint clusters
𝑉𝑠 A sensitive attribute group

3.1 Preliminaries

Definition 1. (Heterogeneous InformationNetworks) [26, 55] AnHING = (V, E),V =
⋃𝑛
𝑖=1V𝑖

is a set of nodes, T = {𝑇1, ...,𝑇𝑛} is a set of n entity types inV , and V𝑖 is the node set about the entity
type 𝑇𝑖 . E =

⋃𝑚
𝑗=1E𝑗 is a set of edges, R = {𝑅1, ..., 𝑅𝑚} is a set of m relation types between entities in

T , and E𝑗 is the edge set about the relation types 𝑅 𝑗 . An HIN requires that |T | + |R | > 2.

Definition 2. (Network Schema) [26, 55] The network schema is a meta template of an HIN G =

(V, E), called G𝑆 = (T ,R), which shows the relations between entity types via the relation types in R.

The G𝑆 = (V, E) has two mappings: (1) an entity-type mapping 𝜙 :V → T maps an entity ofV
into its types in T ; (2) a relation-type mapping𝜓 : E → R maps an edge in E into its relation types
in R. Figure 2 is the network schema of Figure 1.

Definition 3. (Meta-Paths) [55] A meta-path is a path that connects two entities of the same type

via other entity types on the network schema G𝑆 = (T ,R), denoted as P : 𝑇1
𝑅1−→ 𝑇2

𝑅2−→ ...
𝑅𝑙−→ 𝑇𝑙+1.

Meta-path P describes a composite relation R = 𝑅1 ◦ 𝑅2 ◦ ... ◦ 𝑅𝑙 between 𝑇1 and 𝑇𝑙+1, where ◦ is the
composition operator on relations, and 𝑇1 and 𝑇𝑙+1 are the same entity types.

Example 1. If two nodes 𝑣𝑖 and 𝑣 𝑗 are related by the composite relation R in G, there is a path

between them, called a path instance 𝑝𝑣𝑖{𝑣𝑗 of P. Therefore, we acquire all path instances based

on the meta-path P, denoted as 𝑝𝑣𝑖{𝑣𝑗 ⊢ P. In Figure 1, we select three types of meta-paths to model

relatedness between the target entity (U, users) in G by clicking on the entity (K, knowledge concepts),
including P1 (U

1→ K
1← U), P2 (U

1→ V
1→ K

1← V
1← U), and P3 (U

1→ C
1→ K

1← C
1← U),

where 1 represents that there is a relation between entities in Figure 2. In Figure 1, a specific instance of

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 122. Publication date: June 2023.
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the meta-path P1 is U4
1→ K4

1← U5, which represents U4 and U5 connected by clicking and learning

the knowledge concept K4.

Definition 4. (Prerequisite Meta-Paths) A prerequisite meta-path denotes a path that connects

two entities of the same type via the dependency relationship of other entity types on the network

schema G𝑆 = (T ,R), denoted as PP: 𝑇1
𝑅1−→ ...𝑇𝑖

𝑃𝑅𝑖↦−→ 𝑇𝑗 ...
𝑅𝑙−→ 𝑇𝑙+1. PP connects the same type of

entities𝑇1 and𝑇𝑙+1 based on a composite relation R𝑝 = 𝑅1 ◦ ... ◦𝑃𝑅𝑖 ◦ ... ◦𝑅𝑙 , where ◦ is the composition

operator on relations. 𝑃𝑅𝑖 is the prerequisite relationship between 𝑇𝑖 and 𝑇𝑗 .

Example 2. We suppose that the nodes 𝑣𝑖 and 𝑣 𝑗 click on the knowledge concept K𝑖′ and K𝑗 ′ ,
respectively, and K𝑖′ is a prerequisite knowledge concept of K𝑗 ′ . Thus, 𝑣𝑖 and 𝑣 𝑗 are related by the

composite relation R𝑝 in G. As there is a path between them, we say this path is a prerequisite path

instance 𝑝𝑣𝑖{...K𝑖′ ↦→K𝑗 ′ ...{𝑣𝑗 of PP. We obtain all prerequisite path instances based on prerequisite

meta-paths PP, denoted as 𝑝𝑣𝑖{...𝐾𝑖′ ↦→𝐾𝑗 ′ ...{𝑣𝑗 ⊢ PP. In Figure 1, we also select three prerequisite

meta-paths to denote the connections among the entity (U) in the HIN by clicking on the entity

(K), including PP1 (U
1→ K𝑖′ ↦→ K𝑗 ′

1← U), PP2 (U
1→ V

1→ K𝑖′ ↦→ K𝑗 ′
1← V

1← U), and
PP3 (U

1→ C
1→ K𝑖′ ↦→ K𝑗 ′

1← C
1← U), where ↦→ represents the prerequisite relation between K𝑖′

and K𝑗 ′ . A specific instance of the prerequisite meta-path PP1 is U3
1→ K2 ↦→ K5

1← U2, which
denotes U3 and U2 connected by clicking and learning these two knowledge concepts K2 and K5.

In HIN G, we give the entity set K with the prerequisite relationships and the target entity set
𝑉 . Therefore, we use connections among target entities in HIN G via meta-paths and prerequisite

meta-paths to construct an undirected graph, denoted as 𝐺 = (𝑉 , 𝐸, 𝑋 ). 𝑉 = {𝑣1, ..., 𝑣𝑁 } is the node
set formed by the target entity (user), 𝐸 is the edge among nodes, 𝑋 ∈ R𝑁×𝐹 is the feature of
nodes, 𝑁 is the number of nodes, and 𝐹 is the dimension of features. The structure of graph 𝐺
contains two types, i.e., themeta-path connection structure and the prerequisite meta-path connection

structure. Each edge between nodes 𝑣𝑖 and 𝑣 𝑗 in 𝐺 carries a weight A𝑖 𝑗 > 0, which means 𝑣𝑖 and 𝑣 𝑗
are connected. The adjacency matrix of 𝐺 is A ∈ R𝑁×𝑁 = (A𝑖 𝑗 )𝑖, 𝑗∈{1,...,𝑁 } , where A𝑖 𝑗 = A𝑗𝑖 .
Assume that A𝐾𝑖′ ↦→𝐾𝑗 ′ = {𝑝𝐾𝑖′ ↦→𝐾𝑗 ′

{
: 𝑝𝐾𝑖′ ↦→𝐾𝑗 ′

{
⊢ PP} (calculated in Section 4.1.2) is the weight of

the prerequisite meta-path connection structure formed on 𝐾𝑖′ ↦→ 𝐾 𝑗 ′ , and A𝐾𝑖′ = {𝑝𝐾𝑖′
{

: 𝑝𝐾𝑖′
{
⊢ P}

and A𝐾𝑗 ′ = {𝑝𝐾𝑗 ′
{

: 𝑝𝐾𝑗 ′
{
⊢ P} (calculated in Section 4.1.1) are the weight of the meta-path connection

structure formed on𝐾𝑖′ and𝐾 𝑗 ′ , respectively. Consequently, we utilizeA𝐾𝑖′ ; ↦→; 𝐾𝑗 ′ = A𝐾𝑖′∪A𝐾𝑖′ ↦→𝐾𝑗 ′∪
A𝐾𝑗 ′ to denote the overall structure of 𝐺 .

Definition 5. (Structural Constraints) Given k disjoint clusters C = {𝐶1, ...,𝐶𝑘 } of 𝐺 , we
require that each cluster has a similar structure to 𝐺 under the constraints of A𝑘𝑖′ , A𝑘𝑖′ ↦→𝑘 𝑗 ′ , and A𝑘 𝑗 ′ .
The definition of structural constraints in cluster 𝐶𝑙 is as follows:

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 (𝐶𝑙 ) =𝑚𝑖𝑛
∑︁

𝐾𝑖′ ,𝐾𝑗 ′ ∈𝐾𝐶𝑙

A𝐾𝑖′ ↦→𝐾𝑗 ′

A𝐾𝑖′ + A𝐾𝑗 ′
, (1)

where 𝐾𝐶𝑙 is the entity set with prerequisite relationships in 𝐶𝑙 .
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Example 3. In Figure 1, we assume that users U3, U4, and U5 form a cluster (called𝐶𝑙 ) that contains

the meta-path connection structure and prerequisite meta-path connection structure. Thus, this
cluster satisfies the fairness of the structural constraint. If it is similar to [42] that only the meta-path

is considered, then U3 cannot form clusters with U4 (U5) and does not meet the structural constraint.

Definition 6. (Balance Constraints) [20, 37] Assume that nodes have ℎ different demographic

groups relating to sensitive attributes, nodes denoted as 𝑉 =
⋃
𝑠∈[ℎ]𝑉𝑠 (the feature denoted as 𝑋ℎ ∈

R𝑁×ℎ). Given k disjoint clusters C = {𝐶1, ...,𝐶𝑘 } of 𝐺 , we require that each cluster has a proportional

representation of different demographic groups. The definition of balance constraints satisfies:

𝑏𝑎𝑙𝑎𝑛𝑐𝑒 (𝐶𝑙 ) = 𝑚𝑖𝑛
𝑠≠𝑠

′ ∈[ℎ]

|𝑉𝑠 ∩𝐶𝑙 |
|𝑉𝑠′ ∩𝐶𝑙 |

∈ [0, 1], (2)

where the higher the balance constraint value of cluster 𝐶𝑙 , the fairer 𝐶𝑙 .

Example 4. We refer to Example 3 to describe the balance constraint. If one of the users U3, U4, and

U5 in the cluster𝐶𝑙 is female and two of the users are male, we can get 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 (𝐶𝑙 ) = 0.5 according to

Equation (2).

3.2 Problem Definitions

In this section, we define the problem of fair clustering under structural and balance constraints.
We introduce the Normalized Cut [52] (NCut) objective, which normalizes the cut by the total
number of connections between each cluster to the rest of the graph, as the loss function of our fair
clustering. In reality, we achieve fair clustering by learning the embedding of target nodes (users) in
HINs. First, we learn latent embeddings of nodes through information dissemination between them
in the adjacency matrix A and ensure each column of learned latent embeddings is constrained to
be orthogonal. Then, we concatenate the learned orthogonal embeddings of nodes under these two
constraints. Next, we calculate the orthogonal eigenvectors of nodes corresponding to the 𝑘 smallest
eigenvalues. Finally, we combined the learned orthogonal embeddings and orthogonal eigenvectors
of nodes as the input of k-means to generate clustering. More details will be introduced in Section
4.

Definition 7. (NCut Objective) [52, 58] Given an undirected graph𝐺 , the adjacency matrix A,

an integer 𝑘 , the goal is to partition 𝐺 into 𝑘 disjoint clusters by minimizing the NCut objective.

𝑁𝐶𝑢𝑡 (𝐶1, ...,𝐶𝑘 ) =
𝑘∑︁
𝑙=1

𝐶𝑢𝑡 (𝐶𝑙 ,𝐶𝑙 )
𝑣𝑜𝑙 (𝐶𝑙 )

, (3)

where 𝐶𝑢𝑡 (𝐶𝑙 ,𝐶𝑙 ) =
∑
𝑖∈𝐶𝑙 , 𝑗∈𝐶𝑙 A𝑖 𝑗 , 𝐶𝑙 is the complement of 𝐶𝑙 , 𝑣𝑜𝑙 (𝐶𝑙 ) =

∑
𝑖∈𝐶𝑙 𝑑𝑖 denotes the size of

𝐶𝑙 by the sum of weights among nodes in 𝐶𝑙 , and 𝑑𝑖 is the degree of the ith node.

To approximate the objective ofNCut, we introduce the indicator matrix𝐻 ∈ R𝑁×𝑘 = {𝐻1, ..., 𝐻𝑘 },
which includes k indicator vectors 𝐻𝑙 = {𝐻1𝑙 , ..., 𝐻𝑖𝑙 , ...𝐻𝑁𝑙 }𝑇 (𝑖 ∈ {1, ..., 𝑁 }, 𝑙 ∈ {1, ..., 𝑘}) as
columns to encode clusters C = {𝐶1, ...,𝐶𝑘 }, 𝑇 is the transpose. We denote 𝐻𝑖𝑙 as follows:

𝐻𝑖𝑙 =

{ 1√
𝑣𝑜𝑙 (𝐶𝑙 )

, if 𝑣𝑖 ∈ 𝐶𝑙
0, if 𝑣𝑖 ∉ 𝐶𝑙

. (4)

We set 𝑁𝐶𝑢𝑡 (𝐶1, ...,𝐶𝑘 ) = 𝑇𝑟 (𝐻𝑇𝐿𝐻 ) according to the calculation of [58], 𝐻𝑖𝑙 of Equation (4)
satisfies 𝐻𝑇𝐷𝐻 = 𝐼𝑘 , and 𝐷 is the degree matrix of A, 𝐿 = 𝐷 − A is the unnormalized graph
Laplacian matrix, and 𝑇𝑟 is the trace of a matrix. We modify Equation (3) as the problem of
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minimizing 𝑇𝑟 (𝐻𝑇𝐿𝐻 ) over 𝐻 by

min
𝐻 ∈R𝑁 ×𝑘

𝑇𝑟 (𝐻𝑇𝐿𝐻 ), 𝑠 .𝑡 . 𝐻𝑇𝐷𝐻 = 𝐼𝑘 . (5)

Inspired by using the learned node spectral embeddings instead of 𝐻 in [71], we also consider
utilizing the embedding of nodes in 𝐺 to replace 𝐻 . We let 𝑋 and 𝑋ℎ be the original feature of
nodes under structural and balance constraints and use them to replace 𝐻 in Equation (5) to form
the bi-objective of fair clustering by

min
𝑋,𝑋ℎ∈R𝑁 ×𝑘

𝑇𝑟 (𝑋𝑇 𝐿𝑋 ), 𝑇𝑟 (𝑋𝑇
ℎ
𝐿𝑋ℎ), 𝑠 .𝑡 . 𝑋𝑇𝐷𝑋, 𝑋𝑇ℎ 𝐷𝑋ℎ = 𝐼𝑘 . (6)

According to [14], the problem of minimizing the objective of the NCut is NP-hard. The bi-
objective minimization problem of our fair clustering is also NP-hard [23] when two constraints are
considered simultaneously. The complexity of our fair clustering lies within the size of users of HINs.
One way to solve the bi-objective minimization problem is to transform it into a single-objective
problem. We modify Equation (6) as the single-objective minimization to define the loss function of
our fair clustering.

Definition 8. (The Loss Function of Fair Clustering) Given an undirected graph 𝐺 , the

adjacency matrix A, an integer 𝑘 , and the original feature 𝑋 and 𝑋ℎ under structural and balance

constraints to replace H. The loss function of our fair clustering is as follows:

L(Θ) = 𝑇𝑟 (𝑓Θ (𝑋 )𝑇 𝐿𝑓Θ (𝑋 )) +𝑇𝑟 (𝑓Θ (𝑋ℎ)𝑇 𝐿𝑓Θ (𝑋ℎ)),

𝑠 .𝑡 . 𝑓Θ (𝑋 )𝑇𝐷𝑓Θ (𝑋 ), 𝑓Θ (𝑋ℎ)𝑇 𝐿𝑓Θ (𝑋ℎ) = 𝐼𝑘 ,
(7)

where 𝑓 is a graph model, the weight Θ is the parameters of PDFC.

Equation (7) fuses𝑇𝑟 under two constraints into one to become the loss function of fair clustering.
In Section 4, we learn the latent node embedding based on the original features 𝑋 and 𝑋ℎ by using
information dissemination of the adjacency matrix A to train Θ.

4 ALGORITHM

In this section, we describe a Prerequisites-driven Fair Clustering (PDFC) algorithm on HINs.
Specifically, we first construct an adjacency matrix A of 𝐺 based on meta-paths and prerequisite
meta-path, which contain two path types of connection structures. Then, we learn the embedding
information of target nodes along different path information in HINs. Finally, we transform the
bi-objective under structural and balance constraints into a single-objective minimization problem
and give the loss function of PDFC.

4.1 Adjacency Matrix Improvement

The two types of connection structures in 𝐺 determine the closeness of relationships among
nodes, while the quality of graph structure directly affects node embedding learning. Therefore, we
form the adjacency matrix A of 𝐺 via connections among target nodes based on meta-paths and
prerequisite meta-paths in the HIN G.

4.1.1 Connections Based on Meta-paths. In HINs, meta-paths have been effectively used to capture
connections between the same entity types [41, 43]. Given a meta-path P𝑝 of G, we compute the
connection weight between two nodes 𝑣𝑖 and 𝑣 𝑗 by PathSim [55]:

𝑆P𝑝 (𝑣𝑖 ,𝑣𝑗 ) =
2 × |{𝑝𝑣𝑖{𝑣𝑗 : 𝑝𝑣𝑖{𝑣𝑗 ⊢ P}|

|{𝑝𝑣𝑖{𝑣𝑖 : 𝑝𝑣𝑖{𝑣𝑖 ⊢ P}| + |{𝑝𝑣𝑗{𝑣𝑗 : 𝑝𝑣𝑗{𝑣𝑗 ⊢ P}|
. (8)
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Given a set of meta-paths P of G, we can derive a similarity matrix 𝑆P𝑝 for each meta-path
P𝑝 ∈ P according to Equation (8). Then, we construct the adjacency matrix AP , which represents
the meta-path connection structure among nodes, based on similarity matrices sum of meta-paths
P:

AP =

| P |∑︁
𝑝=1

𝛼𝑝𝑆P𝑝 , (9)

where 𝛼𝑝 denotes the importance of the meta-path P𝑝 in P. We apply the k-nearest neighbor
algorithm [4] to select the number of neighbors (𝛿) of each node in the adjacency matrix AP , i.e.,
the number of neighbors 𝑣𝑖 under meta-paths does not exceed 𝛿 .

4.1.2 Connections Based on Prerequisite Meta-paths. Given a prerequisite meta-path PP𝑝 of G, 𝑣𝑖
and 𝑣 𝑗 are nodes of the same type connected through 𝐾𝑖′ and 𝐾 𝑗 ′ (𝐾𝑖′ ↦→ 𝐾 𝑗 ′ ) on PP𝑝 . According
to Definition 4, we refer to Equation (8) to design a prerequisite meta-path, called PrePathSim. We
compute the connection weight between two nodes 𝑣𝑖 and 𝑣 𝑗 by PrePathSim as follows:

𝑆PP𝑝 (𝑣𝑖 , 𝑣 𝑗 ) =
{𝑝𝑣𝑖{...𝐾𝑖′ ↦→𝐾𝑗 ′ ...{𝑣𝑗 ⊢ PP}∑

𝑣𝑠 ∈N
PP𝑝
𝑣𝑗

,𝐾𝑖′ ↦→𝐾𝑗 ′ ∈G𝐾
{𝑝𝑣𝑖{...𝐾𝑖′ ↦→𝐾𝑗 ′ ...{𝑣𝑠 ⊢ PP}

, (10)

whereN PP𝑝𝑣𝑗 is a set of nodes connected to node 𝑣 𝑗 by the prerequisite meta-path PP𝑝 , butN
PP𝑝
𝑣𝑗

does not include 𝑣𝑖 , G𝐾 is a set of prerequisite relationships.
Given a set of prerequisite meta-paths PP of G, we can derive an adjacency matrix 𝑆PP𝑝 for the

prerequisite meta-path PP𝑝 ∈ PP according to Equation (10). We construct the adjacency matrix

APP , which is the prerequisite meta-path connection structure among nodes, based on adjacency

matrix sum of prerequisite meta-paths PP:

APP =

| PP |∑︁
𝑝=1

𝛽𝑝𝑆PP𝑝 , (11)

where 𝛽𝑝 is the importance of each prerequisite meta-path PP𝑝 in PP.
As the prerequisite relationship is directional, APP is an asymmetric matrix. Thus, we let

𝑆PP𝑝 (𝑣𝑖 , 𝑣 𝑗 ) and 𝑆PP𝑝 (𝑣 𝑗 , 𝑣𝑖 ) be equal on prerequisite meta-paths to ensure APP is a symmetric
matrix. Next, we add APP and its transpose to modify APP .

ÂPP = APP + A𝑇PP . (12)
We also apply the k-nearest neighbor algorithm to select the number of neighbors (𝛿) of nodes

in the adjacency matrix ÂPP . Finally, we construct the adjacency matrix A by a weighted sum of
AP and ÂPP .

A = AP + 𝜂ÂPP . (13)
where𝜂 is a trade-off hyper-parameter that decides the importance of ÂPP for learning the structure
of graph 𝐺 . We set 𝜂 ∈ [0, 1], which not only verifies the effectiveness of prerequisite meta-paths
but also improves the structure of the adjacency matrix.

Example 5. We give a simple HIN that contains meta-path (U 1→ K
1← U) and prerequisite meta-

path (U 1→ K𝑖′ ↦→ K𝑗 ′
1← U). According to Equations (8) and (10), we can obtain the node’s meta-path

connection weight and the prerequisite meta-path connection weight, respectively. Then, we construct

the adjacency matricesAP and ÂPP among nodes based on Equations (9) and (12). Finally, we set 𝜂 = 1
to ensure that AP and ÂPP are equally important in Equation (13). The whole construction process

of adjacency matrix A is shown in Figure 3. Compared with existing approaches [41, 43] considering
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Fig. 3. An example of adjacency matrix improvement.

only meta-paths, the new adjacency matrix A is improved according to the connection structures of

meta-paths and prerequisite meta-paths, which enhances the connection among nodes.

4.2 Attention-based Embedding Learning

In reality, as nodes have different neighbors in adjacency matrix A ∈ R𝑁×𝑁 , their importance in
meta-paths and prerequisite meta-paths are also different for specific tasks. Therefore, we present
an attention-based embedding learning model to learn the potential embedding information among
nodes. First, we introduce a node-level attention mechanism to learn the weights between the node
and its connected neighbors under meta-paths and prerequisite meta-paths and aggregate them as
node embeddings. Then, we design a path-level attention network to identify the importance of
meta-paths and prerequisite meta-paths and fuse the structural information of these paths into
node embeddings. The algorithm process is shown in Algorithm 1.

4.2.1 Node-Level Attention. Due to the heterogeneity of nodes in HIN, we need to map node
features into the same feature space before aggregating the weights between nodes and their
connected neighbors under meta-paths and prerequisite meta-paths. The process of mapping is as
follows:

𝑥 ′𝑖 = 𝑀𝜙𝑖 · 𝑥𝑖 , (14)
where 𝑥𝑖 and 𝑥 ′𝑖 are the features of node 𝑖 (replace 𝑣𝑖 ) before and after mapping,𝑀𝜙𝑖 is the mapping
matrix of type 𝜙𝑖 .
Let meta-paths P = {P1, ...,P| P | } and prerequisite meta-paths PP = {PP1, ...,PP | PP | } uni-

formly denote Paths {𝜃1, ..., 𝜃 |MP | }, where |MP| is the sum of |P | and |PP|. We can calculate the
weight between the node 𝑖 and its Paths-based neighborsN𝜃

𝑖
(include 𝑖) by performing an attention

mechanism,N𝜃
𝑖
represents the structural information centered on node 𝑖 on different Paths. Given
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a node pair (𝑖 , 𝑗 ) connected via Paths 𝜃 , we obtain the normalized attention coefficient 𝛼𝜃
𝑖 𝑗
between

𝑖 and 𝑗 as follows:

𝛼𝜃𝑖 𝑗 =
𝑒𝑥𝑝 (𝜎 (a𝑇

𝜃
· [𝑥 ′𝑖 | |𝑥 ′𝑗 ]))∑

𝑙∈N𝜃
𝑖
𝑒𝑥𝑝 (𝜎 (a𝑇

𝜃
· [𝑥 ′

𝑖
| |𝑥 ′
𝑙
]))
, (15)

where 𝜎 is the ReLU nonlinearity function, || is the concatenation operation, a𝜃 is the node-level
attention vector for Paths 𝜃 , and 𝑇 represents transposition. Since Paths-based neighbors of 𝑖 are
different from those of node 𝑗 , the importance of 𝑗 to 𝑖 is different from 𝑖 to 𝑗 , resulting in 𝛼𝜃

𝑖 𝑗
being

asymmetric.
We obtain the Paths-based embedding of node 𝑖 (denoted as 𝑢𝜃

𝑖
) by aggregating the attention

coefficient 𝛼𝜃
𝑖 𝑗
and the mapping features of node 𝑖’s neighbors. To ensure that the training process

is more beneficial, we repeat the node-level attention for L times and concatenate the learned
embeddings of nodes. Thus, the node embedding 𝑢𝜃

𝑖
through the Paths 𝜃 is calculated as follows:

𝑢𝜃𝑖 =
𝐿

∥
𝑙=1
𝜎 (

∑︁
𝑗∈N𝜃

𝑖

𝛼𝜃𝑖 𝑗 · 𝑥 ′𝑗 ). (16)

For the unified set Paths {𝜃1, ..., 𝜃 |MP | } of meta-paths and prerequisite meta-paths, we obtain
node embeddings along the Paths, denoted as {𝑢𝜃1 , ..., 𝑢𝜃 |MP| }.

4.2.2 Path-Level Attention. We know that the connections among nodes can reflect different struc-
tural information according to different Paths. To obtain more comprehensive node embeddings,
we need to integrate the structure information of Paths into node embeddings. We design the
path-level attention to identify the importance of Paths and fuse them as a part of node embeddings.

Let node embeddings {𝑢𝜃1 , ..., 𝑢𝜃 |MP| } learned from the node-level attention be used as the input
of path-level attention. Following [25, 62], we transform node embeddings {𝑢𝜃1 , ..., 𝑢𝜃 |MP| } through
nonlinear networks (e.g., fully connected networks). The importance of the path 𝜃𝑝 in Paths is
called𝑤𝜃𝑝 , which is calculated as follows:

𝑤𝜃𝑝 =
1
|MP|

|MP |∑︁
𝑝=1

𝑞𝑇 ·𝑇𝑎𝑛ℎ(𝑊 · 𝑢𝜃𝑝
𝑖
+ 𝑏), (17)

where 𝑞 is the path-level attention vector, |MP| is the number of Paths,𝑊 and𝑏 are the parameters
on a nonlinear network with the Tanh activation function. Similar to node-level attention, we need
to normalize the importance of all paths in Paths via softmax function. The normalized weight of
path 𝜃𝑝 , denoted as 𝛽𝜃𝑝 :

𝛽𝜃𝑝 =
𝑒𝑥𝑝 (𝑤𝜃𝑝 )∑ |MP |

𝑝=1 𝑒𝑥𝑝 (𝑤𝜃𝑝 )
, (18)

where the size of 𝛽𝜃𝑝 represents the importance in Paths, and the importance of each path is
different. According to the 𝛽𝜃𝑝 , we fuse it with node embeddings {𝑢𝜃1 , ..., 𝑢𝜃 |MP| } to obtain the final
embeddings of nodes containing the connection structure of Paths, denoted as 𝑍 ∈ R𝑁×𝐿𝐹 ′ , as
follows:

𝑍 =

|MP |∑︁
𝑝=1

𝛽𝜃𝑝𝑢
𝜃𝑝 . (19)
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Algorithm 1: Attention-based embedding learning
Input: The heterogeneous information network G = (V, E), the Paths {𝜃1, 𝜃2, ..., 𝜃 |MP | }, the feature

of nodes 𝑋 , the number of attention head 𝐿 ;
Output: The nodes embedding 𝑍 .

1 for each path 𝜃𝑝 ∈ {𝜃1, 𝜃2, ..., 𝜃 |MP | } do
2 for each attention head 𝑙 ∈ {1, ..., 𝐿} do
3 for target node 𝑖 ∈ V do
4 The mapped feature 𝑥 ′

𝑖
of node i;

5 Extract target nodes’ neighbors N𝜃𝑝
𝑖

based on meta-paths and prerequisite meta-paths;
/* According to Equations (8) and (10). */

6 for 𝑗 ∈ N
𝜃𝑝
𝑖

do
7 Calculate the attention weight coefficient 𝛼𝜃𝑝

𝑖 𝑗
;

8 Concatenate the embedding for each attention head 𝑢𝜃𝑝
𝑖

= ∥𝜎 (∑
𝑗∈N𝜃𝑝

𝑖

𝛼
𝜃𝑝
𝑖 𝑗
· 𝑥 ′
𝑗
);

9 Calculate the importance weights of nodes on each path 𝛽𝜃𝑝 ;
10 Obtain the node’s final embedding 𝑍+ = 𝛽𝜃𝑝𝑢

𝜃𝑝 ;
11 return 𝑍 ;

4.3 Fair Clustering

In this section, we inject node embeddings 𝑍 containing structural information into Equation (6) to
replace 𝑋 as structural constraints. We also add the sensitive attribute embeddings of nodes into
Equation (6) to replace𝑋ℎ as balance constraints. Then, we learn the orthogonal embedding of nodes
under two constraints. Next, we concatenate the orthogonal embedding of nodes to compute their
orthogonal eigenvectors. Finally, we modify Equation (7) by combining the orthogonal embeddings
and eigenvectors of nodes, and we perform k-means algorithm on them to achieve clustering.

4.3.1 Structural Constraints. To inject node embeddings 𝑍 into Equation (6), we leverage a fully
connected network to map 𝑍 into k-dimensional space, denoted as 𝑍1 ∈ R𝑁×𝑘 :

𝑍1 = 𝑅𝑒𝐿𝑈 (𝑍 ·𝑊1 + 𝑏1), (20)

where𝑊1 ∈ R𝐿𝐹
′×𝑘 , 𝑏1 ∈ R𝑘 are learnable parameters, 𝑘 is the dimension of features, and 𝑅𝑒𝐿𝑈 is

the activation function.
Next, we replace 𝑋 with 𝑍1 and have 𝑍𝑇1 𝐷𝑍1 = 𝐼𝑘 according to Equation (6). However, we

need to ensure that the mapped node embeddings 𝑍1 are orthogonal to meet the requirements
of spectral clustering. Inspired by this work [51] and rank(𝐼𝑘 ) = k is full rank, we obtain the QR
decomposition by performing the Cholesky decomposition on 𝑍𝑇1 𝐷𝑍1 = 𝑄1𝑄

𝑇
1 , where 𝑄1 ∈ R𝑘×𝑘 is

a lower triangular matrix. Therefore, we set the orthogonal embeddings of nodes 𝑍1 ∈ R𝑁×𝑘 , and
the calculation form is as follows:

𝑍1 = 𝐷
1
2𝑍1 (𝑄−1

1 )𝑇 , (21)

where 𝑄−1
1 ∈ R𝑘×𝑘 is a learnable matrix.

4.3.2 Balance Constraints. Now, we consider how to incorporate Equation (2) into Equation (6) to
minimize the NCut objective. Suppose that sensitive attributes of nodes in 𝐺 contain h different
demographic groups such that

⋃
𝑠∈[ℎ] 𝑉𝑠 . Let 𝑓 (𝑠 ) ∈ {0, 1}𝑁 be the group-membership vector of

𝑉𝑠 , 𝑓 (𝑠 )𝑖
= 1 if 𝑖 ∈ 𝑉𝑠 and 𝑓 (𝑠 )𝑖

= 0 otherwise. Following [37], we integrate C = {𝐶1, ...,𝐶𝑘 } of 𝐺 into
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𝐻 ∈ R𝑁×𝑘 of Equation (4),

∀𝑠 ∈ [ℎ − 1] :
𝑁∑︁
𝑖=1
(𝑓 (𝑠 )
𝑖
− |𝑉𝑠 |

𝑁
)𝐻𝑖𝑙 = 0⇔

∀𝑠 ∈ [ℎ] :
|𝑉𝑠 ∩𝐶𝑙 |
|𝐶𝑙 |

=
|𝑉𝑠 |
𝑁

.

(22)

To ensure that the clustering results are as fair as possible, we add constraint condition 𝐹𝑇𝐻 =

0(ℎ−1)×𝑘 to Equation (5), where 𝐹 ∈ R𝑁×(ℎ−1) is the matrix that has the vectors 𝑓 (𝑠 ) − (|𝑉𝑠 |/𝑁 ) · 1𝑁 .
We know that rank(F) = rank(𝐹𝑇 ) = h-1, and the number of clusters k satisfies: 𝑘 ≤ 𝑁 − ℎ + 1. We
compute the singular value decomposition (SVD) of 𝐹𝑇 to construct a matrix 𝑍 ∈ R𝑁×(𝑁−ℎ+1)
whose columns form the orthonormal basis of the null space of 𝐹𝑇 . Then, we feed 𝑍 into a two-layer
graph convolutional network to obtain the embeddings of k-dimensional space. Finally, we learn
potential associations between nodes and their neighbors by the layer-wise propagation rule, which
captures the spatial information of sensitive attributes of nodes on the graph, denoted as 𝑍2:

𝑍2 = 𝜎 (A𝜎 (A𝑍𝑊 (0) )𝑊 (1) ), (23)

where 𝑍2 ∈ R𝑁×𝑘 is the embeddings of k-dimensional,𝑊 (0) ∈ R(𝑁−ℎ+1)×𝑘 and𝑊 (1) ∈ R𝑘×𝑘 are
learnable parameter matrices, and 𝜎 is the Tanh activation function.
Similar to structural constraints, we replace 𝑋ℎ of Equation (6) with 𝑍2 and have 𝑍𝑇2 𝐷𝑍2 = 𝐼𝑘 ,

𝑍𝑇2 𝐷𝑍2 is positive definite. Then, we also perform the Cholesky decomposition on 𝑍𝑇2 𝐷𝑍2 = 𝑄2𝑄
𝑇
2 ,

where 𝑄2 ∈ R𝑘×𝑘 is a lower triangular matrix. Therefore, we set the sensitive attribute embedding
of nodes, denoted as 𝑍2 ∈ R𝑁×𝑘 , and the calculation form is as follows:

𝑍2 = 𝐷
1
2𝑍2 (𝑄−1

2 )𝑇 , (24)

where 𝑄−1
2 ∈ R𝑘×𝑘 is a learnable matrix.

4.3.3 Loss Fusion of Fair Clustering. 𝑍1 and 𝑍2 (𝑓Θ (𝑋 ) and 𝑓Θ (𝑋ℎ) in Definition 8) are the latent
embeddings of nodes corresponding to 𝑋 and 𝑋ℎ under two constraints, respectively. In reality,
Equation (7) transforms Equation (6) into a single-objective minimization and serves as the loss
function of fair clustering. However, it is difficult to trade-off the loss function under our two
constraints. Thus, we concatenate 𝑍1 and 𝑍2, denoted asZ = [𝑍1 | |𝑍2], and useZ to replace 𝑓Θ (𝑋 )
and 𝑓Θ (𝑋ℎ). We compute orthonormal eigenvectors corresponding to the k smallest eigenvalues of
Z𝐿Z, denoted as 𝐸 ∈ R𝑁×𝑘 . We modify Equation (7) as follows:

L = 𝑇𝑟 (𝐸𝑇Z𝑇𝐿Z𝐸), 𝑠 .𝑡 . 𝐸𝑇𝐸 = 𝐼𝑘 . (25)

Finally, we follow [58, 71] to perform the k-means algorithm onZ𝐸 to partition nodes of 𝐺 into
k disjoint clusters. As a result, our bi-objective becomes a single-objective minimization problem.
Equation (25) is the loss function in the training process of the PDFC and is the optimized expression
of Equation (7). The process of the PDFC algorithm is shown in Algorithm 2.

5 ONLINE ALGORITHM

The dynamic change of HINs over time may update the adjacency matrix A of𝐺 , and the update of
the adjacency matrix A includes three situations: 1) old nodes are removed; 2) new nodes are added;
3) the status of nodes is updated. In this section, we design an updating strategy of the adjacency
matrix A according to sliding window models. Then we integrate the dynamic adjacency matrix A
into PDFC for dynamic clustering.
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Algorithm 2: PDFC
Input: The target node set 𝑉 = {𝑣1, ..., 𝑣𝑁 }, the adjacency matrix A, node embeddings 𝑍 ∈ R𝑁×𝑘 , the

group-membership vector 𝑓 (𝑠 ) ∈ {0, 1}𝑁 , 𝑠 ∈ [ℎ], the number of clusters k.
Output: Clusters C = {𝐶1,𝐶2, ...,𝐶𝑘 }.

1 Compute the Laplacian matrix 𝐿 = 𝐷 − A by the degree matrix 𝐷 ;
2 Map 𝑍 into k-dimensional space 𝑍1 ∈ R𝑁×𝑘 ;
3 Perform the Cholesky decomposition on 𝑍𝑇1 𝐷𝑍1 = 𝑄1𝑄𝑇1 and obtain 𝑍1 = 𝐷

1
2𝑍1 (𝑄−1

1 )
𝑇 ;

4 Obtain a matrix 𝐹 ∈ R𝑁×(ℎ−1) that has the vectors 𝑓 (𝑠 ) − |𝑉𝑠 |
𝑁
· 1𝑁 ;

5 Compute the SVD of 𝐹𝑇 to obtain the matrix 𝑍 ∈ R𝑁×(𝑁−ℎ+1) ;
6 Aggregate neighbor information 𝑍2 = 𝜎 (A𝜎 (A𝑍W(0) )W(1) );
7 Perform the Cholesky decomposition on 𝑍𝑇2 𝐷𝑍2 = 𝑄2𝑄𝑇2 and obtain 𝑍2 = 𝐷

1
2𝑍2 (𝑄−1

2 )
𝑇 ;

8 Concatenate 𝑍1 and 𝑍2,Z =
[
𝑍1 | |𝑍2

]
;

9 Apply k-means onZ𝐸 to partition nodes into k disjoint clusters ;
10 return C;

5.1 Sliding Window Models

The sliding window model consists of two parameters, called window and stride, and their descrip-
tions are introduced below.
Window. The windowW contains the latest interaction information of nodes in the adjacency
matrix A, and |W| is the size of the window, which determines the size of the adjacency matrix A.
There are two ways: a count-based window (select the number of nodes of the adjacency matrix in
the window) and a time-based window (denote a range for the window duration) for us to choose
the type of sliding window.
Stride. The stride S denotes the range of window sliding when updating the adjacency matrix
A to ensure that the clustering results change over time. The size of the stride is denoted as |S|,
representing the range of new data added for the window.
Taking G of Figure 1 as an example, we set the type of windowW as the time-based window,
W duration range is three months, and the stride is one month. Whenever window W slides
forward by one month, theW will remove nodes, add new nodes, and update several nodes in
the adjacency matrix A during this period to derive a new adjacency matrix. Then new adjacency
matrix is processed by clustering algorithms to generate new clustering results.

5.2 Fair Clustering via Sliding Window Models

Let {1, 2, ..., 𝜏} be a sequence of time points, and the interval between any two-time points represents
the strideS of the slidingwindow.𝐺 = {G1,G2, ...,G𝜏 } ofG is a set of states evolving over {1, 2, ..., 𝜏},
where the state of G𝑡 is derived from G𝑡−1 and will subsequently evolve into G𝑡+1, G𝑡−1

⋂
G𝑡 ≠ ∅,

and G𝑡
⋂
G𝑡+1 ≠ ∅. The adjacency matrix A = {A1,A2, ...,A𝜏 } of 𝐺 on {1, 2, ..., 𝜏} denotes the

relationship weights among nodes when the sliding window slides at different time points.
In the static state, fair clustering aims to obtain k clusters with fairness from the node set 𝑉 of

𝐺 , denoted as {𝐶𝑙 }𝑘𝑙=1, where 𝑉 =
⋃{𝐶𝑙 }𝑘𝑙=1, 𝐶𝑙

⋂
𝐶 𝑗 = ∅ for 𝑙 ≠ 𝑗 , 𝐶𝑙 is the l-th cluster, and k is

the number of clusters. However, when 𝐺 = {G1,G2, ...,G𝜏 } changes with the time point sequence
{1, 2, ..., 𝜏}, the fair clustering algorithm needs to dynamically capture the adjacency matrix of 𝐺 at
each time point and obtain the corresponding clusters, denoted as {𝐶𝑙𝑡 }𝑘𝑡𝑙=1, where 𝐶𝑙𝑡 is the l-th
cluster at time point t.
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Fig. 4. An example of a dynamic fair clustering process.

As shown in Figure 4, we take the evolution process of graph 𝐺 at time points t and t+1 as
an example and analyze the state from G𝑡 to G𝑡+1. At time point t, we divide graph G𝑡 by a fair
clustering algorithm to form two clusters 𝐶1𝑡 = {𝑣1, 𝑣2, 𝑣3, 𝑣5} and 𝐶2𝑡 = {𝑣4, 𝑣6, 𝑣7, 𝑣8}, 𝐶1𝑡 and 𝐶2𝑡
satisfy the structural and balance constraints. G𝑡 evolves into G𝑡+1 when the sliding window slides
from time point t to t+1, and we find that the information and structure of G𝑡+1 have changed
compared to G𝑡 . For example, 𝑣2 and 𝑣8 are deleted, 𝑣9 and 𝑣10 are added, and the connections
between other nodes are updated. At time point t+1, we obtain clusters 𝐶1𝑡+1 = {𝑣1, 𝑣9, 𝑣10} and
𝐶2𝑡+1 = {𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} in graph G𝑡+1, and they satisfy the structural and balance constraints.

In practice, the changes from G𝑡 to G𝑡+1 are updates of their corresponding adjacency matrices
A𝑡 andA𝑡+1. We let ΔA𝑡 represent the structural information in the sliding window at time points
t and t+1, which is the common part of A𝑡 and A𝑡+1. Inspired by the common embedding matrix
learning in [66], we decompose ΔA𝑡 into two parts: one part is the adjacency matrix (denoted
as A𝑟

𝑡 ) formed by the nodes that will be removed at the time point t+2, and the other represents
the adjacency matrix (denoted as A𝑖

𝑡 ) formed by the inherent structure of graphs G𝑡 and G𝑡+1. In
addition, we let Ã𝑡+1 be the adjacency matrix of nodes that will add when G𝑡 evolves into G𝑡+1 at
the time point t+1. Therefore, we present an updated strategy of the adjacency matrix with time
point sequence {1, ..., 𝜏} changes, as shown in Algorithm 3.

Algorithm 3: Adjacency matrix update
Input: The initialized sliding windowW𝑡 , the stride S, and the adjacency matrix A𝑡 , the

hyper-parameters 𝜆 and 𝜇;
Output: The updated adjacency matrix A𝑡+1.

1 for each stride S𝑖 ∈ {1, ..., 𝜏} do
2 W𝑡+1

S𝑖←−W𝑡 ;

3 A𝑡+1
S𝑖←− A𝑡 ;

4 ΔA𝑡 = A𝑡 ∩ A𝑡+1;
5 A𝑟𝑡 , A𝑖𝑡 ⇐ Decompose(ΔA𝑡 , |S|);
6 Ã𝑡+1 = A𝑡+1 \ ΔA𝑡 ;

/* Update the adjacency matrix. */

7 A𝑡+1 = 𝜆A𝑟𝑡 + A𝑖𝑡 + 𝜇Ã𝑡+1 ;
8 return A𝑡+1;

Note that both A𝑡 and A𝑡+1, as well as the partial adjacency matrix ΔA𝑡 , A𝑟
𝑡 , etc., have a

dimension R𝑁×𝑁 . We set the hyper-parameters 𝜆 ∈ (0, 1] and 𝜇 ∈ [1, 2), which are attached to the
graph structure formed by meta-paths and prerequisite meta-paths, and control the importance of
the corresponding nodes when updating the adjacency matrix A𝑡+1.
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6 EXPERIMENTS

6.1 Setup

Datasets.We conduct experiments with three real-world datasets: MOOCCube, DBLP, and Movielens.
The detailed statistics of the three datasets are shown in Table 2.

• MOOCCube. MOOCCube is an online education dataset, and it was collected and published on Xue-

tangX
2 by Yu et al. [67]. We get four entities (courses (C), videos (V), users (U), and knowledge

concepts (K)) and their relationships related to computer science from January 1, 2018, to May 31,
2019, as our experimental data and name it as MOOCCube_cs. The sensitive attributes of MOOC-
Cube are contained in its extended dataset MOOCCubeX [68], and we match the corresponding
user information.
• DBLP. DBLP is a citation network dataset, and it was collected and published on AMiner

3 by Tang
et al. [57]. The citation relationship among papers indicates their sequential dependency, which
can be considered one paper is a “prerequisite” for another. Therefore, we uniformly express
the citation relationship as a prerequisite relationship in this work. We extracted three entities
(authors (A), papers (P), and venues (V)) and their relationships from journals or conferences in
three fields of database, data mining, and information retrieval from 2009 to 2018. Since DBLP does
not involve sensitive attributes such as gender or race, we investigated several studies [9, 45, 63]
on the gender ratio of authors who published papers in computer science and found that the
proportion of female authors has been 15%-22% for the past two decades. Therefore, we simulate
that the proportion of female authors in our extracted dataset is 20%. We set the parameter 4:1
in the random function to indicate the ratio of male authors (denoted as 1) to female authors
(denoted as 0), then randomly allocate 1 and 0 to the authors in DBLP.
• Movielens. It is a rating dataset about movies collected by GroupLens. We get two entities
(users (U) and movies (M)) and their relations in Movielens [1]. The potential relationship
between movies is their dependence, which indicates the “prerequisite” relationship of our work
description. We require dependency values between movies in [1] greater than 0.5. Inspired by
age as a sensitive attribute in [64], we divide users into two groups based on whether the age of
user reviews is greater than 4.

We selected the data of MOOCCube_cs from January 1, 2018, to March 31, 2018, the DBLP data
from January 2009 to December 2011, and the entire MOOCCube_cs as the offline data of PDFC. We
set meta-paths and prerequisite meta-paths on DBLP as {APA, AVPVA} and {APPA, AVPPVA}, and
the two kinds of paths on MOOCCube_cs are described as Example 1 and Example 2. We set meta-
paths and prerequisite meta-paths in Movielens as UMU and UMMU, respectively. We implement
dynamic PDFC by the sliding window model on the remaining data of MOOCCube_cs.
Baselines.We evaluate the performance of our PDFC by comparing it with several state-of-the-art
fair clustering algorithms.

• Fair k-medians (FKmedi) [7]. This fair clustering is a scalable algorithm for computing (r, b)-
fairlet decompositions with a running time be nearly linear by any integer values of r, b. Note
that it only implements comparison under balance constraints.
• Fair Spectral Clustering (FSC) [37]. This fair algorithm tries to incorporate the fairness notion
in [20] into spectral clustering for partitioning graph data. We implement unnormalized and
normalized spectral clustering algorithms with fairness constraints, denoted as UFSC and NFSC,
respectively.

2http://www.xuetangx.com
3https://www.aminer.cn/citation
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Table 2. Statistics of datasets.

Datasets Entities Count Relations Count

MOOCCube_cs

C 150 C-V 7745
V 6730 V-K 26224
K 4884 C-K 10692

U 106834 U-C 250931
U-V 3700129

DBLP
A 24964 A-P 48534
P 24916 P-V 24916
V 20 A-V 36091

Movielens
U 943 U-M 100000
M 1682 M-M 6183

• Variational Fair Clustering (VFC) [72]. It is a general and bound-optimization framework of
fair clustering, which integrates a Kullback-Leibler fairness term with clustering objectives. We
implement the Ncut objective of VFC, denoted as NVFC.

Implementations. We set the hyper-parameters of PDFC and its variants to our experiment. For
𝛼 and 𝛽 of connections based on meta-paths and prerequisite meta-paths, we set their values are 0.5,
0.25, and 0.25 in MOOCCube_cs, 0.6 and 0.4 in DBLP, and 1 in Movielens. The number of attention
heads L is 4 in attention-based embedding learning. We select Adam [34, 59] as the optimizer of
PDFC and its variants with the epoch being 50, the learning rate being 0.05, and weight decay
being 0.01. We implement PDFC and its variants with PyTorch 1.12 in Python 3.8. All experiments
run on the PC with 11th Gen Intel(R) Core(Tm) i5-11300H@3.10GHz.
Evaluation Metrics.We design several metrics to evaluate our method and baselines according to
Equations (1) and (2).
• BalF. We utilize min balance(𝐶𝑙 ) as the overall balance fairness (BalF) [72] of clustering results
according to Equation (2).
• BalFE. Inspired by defining the average of Equation (2) over all clusters as “Balance" [37], we
denote the difference between the average BalF and the balance of sensitive attributes in the
original data as the balance fairness error (BalFE).
• Bal_Euc. We compute the Euclidean distance between the ratio of sensitive attributes in clusters
and the ratio of the original data to represent the closeness of overall clustering, called Bal_Euc.
• StrF, StrFE, Str_Euc. Similar to balance constraints, we also define the structural fairness (StrF),
structural fairness error (StrFE), and Str_Euc (the Euclidean distance between the structure of
meta-paths and prerequisite meta-paths in clusters and the original dataset to denote the closeness
of the overall clustering results) according to Equation (1).
We take the value as the error between k clusters when the objective of methods converge, called

ObjE, which is the optimal loss function value in Equation (25). We also record the computational

time of methods as a metric. Note that except for the metrics StrF and BalF, the smaller values of
others are better.

6.2 Effectiveness

In this section, we investigate the effect of the number of neighbors (𝛿) of the adjacency matrix
A and the parameter (𝜂) of meta-paths and prerequisite meta-paths on different methods. Under
structural, balance, and two constraints, we denote methods asMETHOD_str,METHOD_bal,
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Fig. 5. The evaluation metrics of methods change with increasing 𝛿 under structural constraints.

Table 3. Fairness comparisons of PDFC_str with other methods under structural constraints.

Methods MOOCCube_cs DBLP Movielens

Str_Euc StrF/StrFE ObjE Time(s) Str_Euc StrF/StrFE ObjE Time(s) Str_Euc StrF/StrFE ObjE Time(s)

UFSC_str 10.5046 0.0/0.3214 33.6848 11.5669 2.2226 0.0981/0.0171 25.5069 27.111 10.6225 0.0/0.0754 40.6206 0.5255
NFSC_str 6.4913 0.0751/0.1428 8.4768 52.6022 3.2139 0.0/0.0124 7.1465 126.9949 3.9492 0.0/0.006 11.5141 1.0167
NVFC_str 5.8706 0.0762/0.1350 60.0 95.6576 3.2943 0.0363/0.0006 60.0 158.7442 1.3076 0.0231/0.0096 2.0 28.6134
PDFC_str 4.8314 0.2011/0.0710 22.6061 67.5309 2.7789 0.1244/0.0613 30.0963 94.6937 3.0156 0.0011/0.0043 40.2717 10.7954

and METHOD, respectively. Then we obtain the average results of running ten times for methods
and analyze their effectiveness.

6.2.1 Analysis of Structural Fairness. Under structural constraints, we set 𝜂 as 1 in Equation (13),
the number of clusters as 30, and eliminate sensitive attributes to analyze structural fairness.
As shown in Figure 5, we exhibit the change of evaluation metrics of UFSC_str, NFSC_str,

NVFC_str, and PDFC_str methods with the increase of 𝛿 . As 𝛿 increases, we find that Str_Euc
of UFSC_str and NVFC_str gradually increase on two datasets. However, the Str_Euc values of
NFSC_str and PDFC_str gradually decrease on MOOCCube_cs, while the Str_Euc of NFSC_str
increases and the Str_Euc of PDFC_str oscillates on DBLP. On MOOCCube_cs, we can see that the
Str_Euc of PDFC_str outperforms other methods in all 𝛿 , and PDFC_str gets the best Str_Euc
when 𝛿 = 40. The Str_Euc of PDFC_str is not optimal among all methods on DBLP, and it reaches
the optimal when 𝛿 = 40. For the StrF, PDFC_str increases with 𝛿 , while the other methods perform
poorly on two datasets. We find that the StrF of PDFC_str outperforms other methods on two
datasets, and PDFC_str achieves the optimal value on MOOCCube_cs and DBLP when 𝛿 = 70 and
𝛿 = 90, respectively. The StrFE of NFSC_str gradually decreases as 𝛿 increases, while the StrFE of
UFSC_str and NVFC_str increases. Interestingly, the StrFE of PDFC_str oscillating changes on
MOOCCube_cs and is better than other methods, while its StrFE gradually increases on DBLP and is
not optimal in all methods. The StrFE of PDFC_str is optimal on MOOCCube_cs and DBLP when
𝛿 = 30 and 𝛿 = 40, respectively. Except for NVFC_str, the ObjE of the other methods increases
with 𝛿 on two datasets, especially the ObjE of UFSC_str has the fastest growth rate. We find that
the ObjE of PDFC_str is only weaker than NFSC_str on two datasets.

We take evaluation metrics StrF and Str_Euc as the key metrics to determine the optimal 𝛿 of all
methods. On MOOCCube_cs, we select the 𝛿 of UFSC_str, NFSC_str, NVFC_str, and PDFC_str
are 20, 90, 10, and 40, respectively. On DBLP, we select the 𝛿 of UFSC_str, NFSC_str, NVFC_str,
and PDFC_str are 10, 10, 20, and 40, respectively. On Movielens, we also select the optimal 𝛿 of
each method. Then we report the best metrics of methods for comparison, as shown in Table 3.
On MOOCCube_cs, although the ObjE of PDFC_str is weaker than NFSC_str and elapsed time of
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Fig. 6. The evaluation metrics of methods change with increasing 𝛿 under balance constraints.

Table 4. Fairness comparisons of PDFC_bal with other methods under balance constraints.

Methods MOOCCube_cs DBLP Movielens

Bal_Euc BalF/BalFE ObjE Time(s) Bal_Euc BalF/BalFE ObjE Time(s) Bal_Euc BalF/BalFE ObjE Time(s)

FKmedi 4.9348 0.4397/0.3293 983.0837 9.5735 12.0396 0.2176/0.6840 3267.8235 30.6973 7.6002 0.2877/0.5036 9065.1912 2.5057
UFSC_bal 4.8716 0.0/0.1035 47.9633 11.6157 3.9372 0.0/0.0255 31.4785 14.9498 3.1597 0.0769/0.005 24.3162 0.2244
NFSC_bal 1.3433 0.3901/0.0011 6.0789 50.5786 1.0997 0.1546/0.0009 9.2289 118.7103 2.7892 0.0833/0.006 14.1697 0.712
NVFC_bal 1.0276 0.4092/0.0022 23.7719 240.7116 1.0655 0.1535/0.0010 37.8243 202.7759 3.3828 0.128/0.0384 N/A 28.3343
PDFC_bal 1.1831 0.4245/0.0052 9.3919 30.1671 1.0512 0.1617/0.0003 14.4626 37.3380 2.445 0.1763/0.0159 12.8835 2.8213

PDFC_str is weaker than UFSC_str, the Str_Euc, StrF, and StrFE of PDFC_str are better than
other methods, especially StrF which indicates the structural fairness of clustering results. On DBLP,
we find that although the metrics of PDFC_str are not much better than that of UFSC_str, its StrF
is the best. Compared with the other two methods, the Str_Euc, StrF, and time of PDFC_str have
advantages. Since PDFC_str contains more matrix operations, its elapsed time is higher than that
of UFSC_str (there are fewer matrix operations in the four methods). Unexpectedly, we find the
NVFC_str is optimal in the Str_Euc, StrF, and ObjE metrics on Movielens. However, its elapsed
time is the highest. The StrFE of our PDFC_str is optimal, and its Str_Euc, StrF, and ObjE metrics
are better than the other two methods.
Insight 1: In DBLP, Str_Euc and elapsed time of UFSC_str are better than PDFC_str. One reason
is that the matrix calculation of UFSC_str is less. The other is that clustering results of UFSC_str
are disequilibrium, and a large cluster appears. In Movielens, the NVFC_str obtains the optimal
solution by constraining the range of solutions, but its cost is a long-elapsed time.

6.2.2 Fairness Analysis of Sensitive Attributes. We set 𝜂 to be 0 in Equation (13) to ensure that
the adjacency matrix A does not contain the structural information of prerequisite meta-paths.
The number of clusters is still 30, and we evaluate the effectiveness of methods under balance
constraints.

As shown in Figure 6, we display the change of evaluation metrics of the UFSC_bal, NFSC_bal,
NVFC_bal, and PDFC_balmethods as 𝛿 increases. On two datasets, we can see that the Bal_Euc of
NFSC_bal and PDFC_bal decreased with the increase of 𝛿 , but that of UFSC_bal and NVFC_bal
increased gradually. On two datasets, the Bal_Euc of PDFC_bal is optimal when 𝛿 = 100. The
BalF of UFSC_bal remains 0 as 𝛿 changes on both datasets, while the BalF of the NVFC_bal
decreases and the other two methods increase. The BalF of PDFC_bal outperforms other methods
on MOOCCube_cs, while it is weaker than the BalF of NFSC_bal when 𝛿 ∈ [40, 90] on DBLP. The
BalF of PDFC_bal is optimal when 𝛿 = 100. Except for the BalFE of UFSC_bal increases with 𝛿 ,
BalFE of other methods decreases gradually, and the overall change is small. However, the BalFE of
NVFC_bal oscillates slightly on DBLP. The BalFE of PDFC_bal outperforms other methods when
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Fig. 7. The metric of methods varies with increasing 𝜂.
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Fig. 8. The metric of methods varies with increasing 𝑘 .

𝛿 >= 60 on two datasets, and the BalFE of PDFC_bal BalFE is optimal when 𝛿 = 100. The ObjE of
the four methods increases gradually with the increase of 𝛿 , while the ObjE of UFSC_bal increases
fastest with 𝛿 . The ObjE of UFSC_bal is still optimal due to its fewer matrix calculation, similar to
structural constraints.

We take BalF and Bal_Euc as the keymetrics to obtain the optimal 𝛿 of methods. On MOOCCube_cs,
we select the 𝛿 of UFSC_bal, NFSC_bal, and NVFC_bal are 30, 80, and 10, respectively. On DBLP,
we select the 𝛿 of UFSC_bal, NFSC_bal, and NVFC_bal are 10, 60, and 20, respectively. As for the
𝛿 of PDFC_bal is 100 on two datasets. On Movielens, we also select the optimal 𝛿 of each method.
In addition, we add the FKmedi method for comparison. Then we report their best metrics for
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Table 5. Fairness comparisons of PDFC with other methods on two constraints.

Metrics MOOCCube_cs DBLP Movielens

UFSC NFSC NVFC PDFC UFSC NFSC NVFC PDFC UFSC NFSC NVFC PDFC

Str_Euc 9.4735 6.2954 3.9229 3.3381 2.6186 4.0282 3.4046 2.9687 12.1295 4.2493 1.3617 2.2253
StrF 0.0 0.0135 0.3481 0.1432 0.0468 0.0314 0.0228 0.0541 0.0 0.0 0.0217 0.0007
StrFE 0.3053 0.1926 0.1613 0.0104 0.0459 0.0215 0.0058 0.0563 0.0738 0.0216 0.0175 0.0084

Bal_Euc 6.1871 1.5857 1.2722 1.1703 6.7707 1.1595 0.9589 0.7793 7.7193 3.5872 3.1073 2.8952
BalF 0.0 0.3439 0.3463 0.3718 0.0 0.1556 0.1557 0.173 0.0 0.1149 0.1492 0.1999
BalFE 0.1561 0.0113 0.0003 0.0013 0.0455 0.0043 0.0007 0.0067 0.167 0.026 0.024 0.0236

ObjE 240.2098 11.5153 58.4773 0.1079 484.2649 19.443 60.0 0.5428 696.6013 32.446 2.0 0.0129
Time(s) 21.9898 103.2949 276.3581 91.1281 44.5793 174.3751 172.6359 117.4046 0.6383 1.8151 28.3476 7.833

comparison, as shown in Table 4. Compared with other methods on MOOCCube_cs, we find that
none of the evaluation metrics of PDFC_bal is optimal, but it still has advantages. For example,
although Bal_Euc of NVFC_bal is superior than PDFC_bal, its elapsed time is eight times that
of PDFC_bal. The BalF of FKmedi is superior than PDFC_bal, but its ObjE is nearly 105 times
that of PDFC_bal. The Bal_Euc and BalF of the PDFC_bal method are superior to UFSC_bal
and NFSC_bal. On DBLP, the Bal_Euc and BalFE of PDFC_bal are best. The Bal_Euc and ObjE

of PDFC_bal are optimal on Movielens. The situation of other metrics on these two datasets is
similar to that of MOOCCube_cs.
Insight 2: On MOOCCube_cs, although each evaluation metric of the PDFC_bal method is not
optimal, it has advantages when all evaluation metrics are considered comprehensively.

6.2.3 Fairness Analysis under Two Constraints. In this section, we set 𝛿 as 50, the number of clusters
(𝑘) from 10 to 50, and let 𝜂 range from 0.1 to 1 to investigate the influence of hyper-parameter 𝜂
and 𝑘 on methods by considering two constraints.
We set the number of clusters as 30 and investigate the influence of hyper-parameter 𝜂 on

methods. As shown in Figure 7, we display the change of evaluation metrics Str_Euc, StrF, Bal_Euc,
and BalF of the UFSC, NFSC, NVFC, and PDFC methods with 𝜂. On MOOCCube_cs, we find that
the Str_Euc of PDFC is better than other methods, while only its StrF is weaker than NVFC.
The Bal_Euc and BalF of PDFC are slightly better than other methods. We find that the Str_Euc,
Bal_Euc, and BalF of PDFC are optimal when 𝜂 = 0.4, while its StrF is best when 𝜂 = 0.6. We select
0.4 as the optimal 𝜂 of PDFC. Compared with other methods on DBLP, we can see that the Str_Euc
and StrF of PDFC are better than other methods, but its Str_Euc is weaker than UFSC when 𝜂 <=
0.6 on DBLP. Although the BalF of PDFC is not as stable as the NFSC method, its Bal_Euc and BalF
are better than other methods. We find that the Bal_Euc and BalF of PDFC are optimal when 𝜂 =
0.7, the Str_Euc value is best when 𝜂 = 0.1, and the StrF value is best when 𝜂 = 0.5. We select 0.7 as
the optimal 𝜂 of PDFC. On Movielens, we find that the Str_Euc and StrF of NVFC are optimal,
while the Bal_Euc and BalF of PDFC are optimal. The Str_Euc and Bal_Euc of UFSC increase with
𝜂, while its StrF and BalF are always 0. We set the 𝜂 value of UFSC as 0.1. The BalF of NVFC and
PDFC are optimal when 𝜂 = 0.3 and 𝜂 = 0.5, and we set their 𝜂 value as 0.3 and 0.5, respectively.
The BalF of NFSC is optimal when 𝜂 = 0.8, and we set its 𝜂 value as 0.8.

We set 𝜂 of all methods as the optimal value in Figure 7 and investigate the influence of hyper-
parameter 𝑘 on them. As shown in Figure 8, we display the change of evaluation metrics StrF, BalF,
ObjE, and elapsed time of the UFSC, NFSC, NVFC, and PDFC methods with 𝑘 . On three datasets,
the StrF and BalF of the four methods decrease with the increase of 𝑘 . The elapsed time of four
methods increases gradually with 𝑘 , the ObjE of UFSC, NFSC, and NVFC is also increasing, while
the ObjE of PDFC remains unchanged. However, the StrF and BalF of UFSC are always 0 with
the increase of 𝑘 . Interestingly, as the 𝑘 increases, the ObjE of PDFC is the best in all methods
and very small. Except for the StrF on MOOCCube_cs and Movielens, other metrics of PDFC have
advantages over other methods on three datasets.
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Fig. 9. The elapsed time of methods.
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Fig. 10. Convergence analysis of PDFC and its variants.

Without losing generality, we set the number of clusters (k) as 30 and 𝜂 of methods as the optimal
value in Figure 7. We obtain the values of other evaluation metrics of methods according to the
best results of Str_Euc, StrF, Bal_Euc, and BalF metrics in Figure 7, as shown in Table 5. On three
datasets, we find that although PDFC is weaker than one of the methods in individual evaluation
metrics, more than half of its evaluation metrics are optimal. Therefore, these experimental results
prove that we concatenate node embeddings of structural and balance constraints that are effective.
Insight 3: After we concatenate node embeddings of structural and balance constraints, the ObjE
improves at least 87, 26, and 988 times on MOOCCube_cs, DBLP, and Movielens. One reason is we
concatenate node embeddings of structural and sensitive attributes, which can help us alleviate the
trouble when optimizing the bi-objective. Another is that PDFC can learn rich information via
meta-paths and prerequisite meta-paths to ensure a close connection among nodes and provide a
basis for fair clustering.
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6.3 Efficiency

6.3.1 Elapsed Time. As shown in Figure 9, we exhibit the elapsed time of methods varies with 𝛿
and 𝜂 on MOOCCube_cs and DBLP. Figure 9(a) shows the elapsed time change with the increase of 𝛿
under structural constraints. The elapsed time of PDFC_str and NVFC_str gradually increases
as 𝛿 increases on the two datasets, and UFSC_str does not change much. Strangely, the elapsed
time of NFSC_str is unchanged on MOOCCube_cs, and it changes dynamically with 𝛿 on DBLP.
PDFC_str has a long-elapsed time because it contains more matrix operations, NVFC_str has a
small threshold (Figures 9(b) and (c) also show the high time cost.), and UFSC_str and NFSC_str
are only affected by the dimensions of the adjacency matrix. In Figure 9(b), except for the elapsed
time of NVFC_bal changes with 𝛿 , other methods have little overall change. We can see that the
elapsed time of NVFC_bal decreases with the increase of 𝛿 on MOOCCube_cs, but the opposite is
true on DBLP. Since the PDFC_bal has fewer matrix operations, its elapsed time is reduced and
even lower than that of NFSC_bal. In Figure 9(c), we find that the elapsed time of PDFC, UFSC,
and NFSC under two constraints is roughly the sum of the elapsed time in Figure 9(a) and (b).
However, NVFC is affected by the set threshold, and its elapsed time changes dynamically on
different 𝜂, especially on DBLP. Compared with the NFSC and NVFC methods, the elapsed time of
PDFC is acceptable under two constraints.

6.3.2 Convergence Analysis. Figure 10 shows the convergence of PDFC on MOOCCube_cs and
DBLP with the increase of iteration. We reduce the ObjE value by 100 and 100000 times under
structural and balance constraints, respectively. We observe that the convergence of PDFC is
the best under structural constraints, and the overall convergence is still achieved under the
balance constraint, although there are several outliers. Under the two constraints, we find that the
convergence of PDFC on MOOCCube_cs is better than that on DBLP. In addition, the convergence
of PDFC experiences a slight oscillation after 25 iterations on DBLP. The reason is that there is a
large scale of entities in DBLP, but their interaction relationships are sparse.

6.4 Dynamic Clustering Analysis

On MOOCCube_cs, we set the sliding window size to be 3 and the sliding stride to be 1, where its
unit of measure is the month.

6.4.1 Parameter Sensitivity. The update of the adjacency matrix A contains two parameters: 𝜆 and
𝜇, where 𝜆 controls the importance of the graph structure among nodes that will be deleted at
the next time, and 𝜇 represents the importance of the graph structure among nodes added at the
current time.
We observed how 𝜆 and 𝜇 affect the performance of PDFC by varying 𝜆 from 0.1 to 0.9 and

𝜇 from 1.1 to 1.9 for MOOCCube_cs, as shown in Figure 11. At time t and t+1, we find that BalF is
overall better than StrF in the clustering results. The reason is that we update the adjacency matrix
through parameters 𝜆 and 𝜇 leading to the structure change of the graph, which has a tremendous
influence on StrF and a small impact on BalF. These values indicate that the StrF and BalF are better
when 𝜇 ∈ [1.5, 1.9]. Therefore, 𝜇 increases the importance of graph structure among newly added
nodes. We can see that the overall values of StrF are better while the BalF is slightly poor when
𝜆 ∈ [0.5, 0.9]. However, the values of these two metrics are just the opposite when 𝜆 ∈ [0.1, 0.5].
The reason is that the correlation of the graph structure between nodes may be destroyed when 𝜆
is small, resulting in weak connectivity among nodes and poor results.

6.4.2 Time Change underW. As shown in Figure 12, the elapsed time of PDFC as the sliding
window slides with the stride. Because the number of captured nodes is different when the sliding
window strides, we find that the elapsed time of PDFC is also dynamic. The reason is that the
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Fig. 11. Effect of hyperparameters 𝜆 and 𝜇 on PDFC performance when the adjacency matrix is updated.
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Fig. 12. The elapsed time of PDFC as the sliding window slides with the stride.

number of nodes determines the dimensions of the adjacency matrix, which affects the matrix
operation and leads to different elapsed times of PDFC under the sliding window.

7 CONCLUSIONS

We investigated fair clustering on HINs to ensure structural fairness and eliminate biases inherent
toward sensitive attributes. To achieve this goal, we proposed a Prerequisite-driven Fair Clustering
algorithm (PDFC). In addition, we designed an adjacency matrix update strategy to expand PDFC
and dynamically capture fair clustering results to deal with stream or time-varying data. Our
experiments on three real-world datasets verified the effectiveness and efficiency of PDFC. In
future research, we will improve fair results for different objectives from the perspective of multi-
objective optimization, since we found that the evaluation metrics cannot reduce simultaneously
under structural and balance constraints.
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