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This paper proposes a federated, fair, and fast 𝑘-means algorithm (F3KM) to solve the fair clustering problem

efficiently in scenarios where data cannot be shared among different parties. The proposed algorithm decom-

poses the fair 𝑘-means problem into multiple subproblems and assigns each subproblem to a client for local

computation. Our algorithm allows each client to possess multiple sensitive attributes (or have no sensitive

attributes). We propose an in-processing method that employs the alternating direction method of multipliers

(ADMM) to solve each subproblem. During the procedure of solving subproblems, only the computation results

are exchanged between the server and the clients, without exchanging the raw data. Our theoretical analysis

shows that F3KM is efficient in terms of both communication and computation complexities. Specifically,

it achieves a better trade-off between utility and communication complexity, and reduces the computation

complexity to linear with respect to the dataset size. Our experiments show that F3KM achieves a better

trade-off between utility and fairness than other methods. Moreover, F3KM is able to cluster five million

points in one hour, highlighting its impressive efficiency.
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1 INTRODUCTION
The rise of big data has emphasized the crucial role of clustering analysis in data science. This

statistical technique facilitates the exploration of a dataset’s internal structure by organizing data
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Fig. 1. When data sharing is prohibited and fairness is disregarded, institutions A and B obtain inaccurate
and biased results. However, enabling data sharing and implementing fair clustering can lead to accurate and
unbiased results.

points into clusters [5]. As one of the most classical clustering algorithms, 𝑘-means aims to partition

data points into 𝑘 clusters such that the points within a cluster are as close as possible [49]. 𝑘-means

has found extensive applications in various domains, including healthcare [26, 32, 42, 45], finance

[14, 20, 37, 55], education [29, 43], etc. Its usage has facilitated data understanding, improved

decision-making efficiency, and provided high-quality services.

However, applying 𝑘-means in these domains may pose some issues due to legal mandates

[21, 28]. Let us consider the following scenario in Figure 1: two financial institutions, A and B,

seek to conduct collaborative 𝑘-means clustering analysis on a set of customers by using the credit

card transaction data to identify distinct credit risk analysis. Due to the sensitivity of financial

data, such as income and transaction records, each institution is restricted to accessing its own

portion of customer transaction data solely, thereby preventing the direct sharing of raw data.

Furthermore, both institutions aim to ensure that the clustering results adhere to the principle of

fairness, whereby the proportion of protected groups, comprising demographics such as gender and

race, is approximately equal across clusters [15]. However, due to data unavailability for sharing

and insufficient attention to fairness, institutions A and B cluster the same users but obtain different

results with unfairness. Specifically, institution A clusters low-income black and Asian females

together, while institution B clusters individuals who are married with high loans. If financial

institutions are able to obtain additional user features while ensuring fairness, they can improve

the accuracy of credit risk assessment and enhance customer satisfaction [6, 33].

Vertical federated learning (VFL) is a promising framework for addressing the issue of non-

sharable data. It is a distributed machine learning approach that divides features among clients so

that each client possesses an independent set of features while sharing the same set of users [23, 34,

35, 39, 51, 52]. VFL enables the training and updating of models using data from multiple clients

without exposing raw data. However, current VFL frameworks for clustering face communication

bottlenecks [31]. Specifically, the communication complexity of existing frameworks is highly

contingent on the dataset size. Ding et al. [19] developed a constant approximation scheme for

𝑘-means clustering, which exhibit linear communication complexity with respect to the dataset size.

Huang et al. [31] proposed a technique for reducing communication complexity by constructing

a coreset, which results in sublinear complexity with respect to the dataset size. However, such

communication complexity remains intolerable in the era of big data.

Fairness in federated 𝑘-means is also a focal point of our concern. Specifically, we are concerned

with group fairness, which is a notion that emerged from the disparate impact doctrine [22] and

was initially introduced by Chierichetti et al. [15]. In the context of clustering, group fairness

can be characterized by the proportional representation of protected groups in each cluster. More
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precisely, the outcome of clustering should ensure that the proportion of protected groups in each

cluster is approximately equivalent. For example, in Figure 1, the clustering results of institution A

either consist entirely of females or males, which is evidently unfair. Current methods for ensuring

fairness in 𝑘-means clustering primarily rely on pre-processing [9, 15] or post-processing [11, 30]

techniques. Specifically, Chierichetti et al. [15] proposed a pre-processing approach that involved

transforming the data into a specific format called fairlet, followed by conducting clustering on the

fairlet. On the other hand, Bera et al. [11] proposed a post-processing method that employed linear

programming (LP) to ensure fairness after performing the clustering. However, these methods

cannot control the optimization objective directly, which limits the applicability of these methods in

the context of VFL. Furthermore, adjustment of the data or result may cause legal implications and

an inexplicable model, which might be inconsistent with the data protection rules with regard to

interpretability [40]. Moreover, the state-of-the-art method for solving fair 𝑘-means problem entails

solving a LP problem consisting of 𝑛𝑘 variables [11], where 𝑛 denotes the number of data points

and 𝑘 denoted the number of clusters. However, when 𝑛 surpasses the million-level threshold, this

method struggles to solve the fair 𝑘-means problem rapidly within a truncated period.

To solve the fair 𝑘-means problem in the VFL scenario efficiently, we propose a novel federated,

fair, and fast 𝑘-means algorithm, called F3KM. Our contributions can be summarized as follows:

• We propose a novel approach to address the fair 𝑘-means problem within the VFL framework,

which effectively mitigates the concern of compromising sensitive data. Specifically, we decom-

pose the fair 𝑘-means problem into multiple subproblems that can be efficiently solved on the

client-side. By doing so, the client is only required to transmit the computed results instead of

the raw data to the central server (Section 4.1).

• We propose an in-processing method for solving the fair 𝑘-means problem. Specifically, we

transform the fair 𝑘-means problem into a single-variable optimization problem with multiple

inequality constraints and employ alternating direction method of multipliers (ADMM) to solve it.

Our method ensures fairness for multiple protected groups by making modifications solely to

the clustering model during the solving process, thereby avoiding direct adjustments to the data

or results (Section 4.2).

• Our theoretical analysis shows that the proposed F3KM algorithm, which leverages ADMM to

iteratively solve the fair 𝑘-means problem for both primal and dual variables, achieves linear

computational complexity with respect to the dataset size𝑛. This makes our methodmore efficient

than the state-of-the-art method that requires solving the LP with 𝑛𝑘 variables. Furthermore,

we propose a block coordinate descent (BCD) method to optimize primal variables, achieving a

better trade-off between utility and communication complexity. Specifically, it enables a linear

speedup of 1/𝑛𝑏 in communication complexity, where 𝑛𝑏 denotes the number of points in each

block (Section 4.3).

• We demonstrate the effectiveness and efficiency of F3KM over ten real-world datasets in our

experimental evaluations. Our experimental findings indicate that F3KM outperforms the state-

of-the-art method regarding the trade-off betweem utility and fairness. In addition, F3KM can

complete fair 𝑘-means on a dataset comprising 5 million points within one hour, whereas the

state-of-the-art method is only capable of achieving fair 𝑘-means on a dataset containing 0.5

million points (Section 5).

2 RELATEDWORK
We review relevant literature across three domains: federated clustering, fair clustering, and fast

clustering.

Federated clustering. Most existing studies for federated clustering have been conducted in

the context of horizontal federated learning (HFL) [8, 10, 18, 25, 44]. Among these studies, the
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algorithm proposed by Dennis et al. [18] for heterogeneous networks achieved a one-shot com-

munication complexity, making it one of the most advanced federated clustering algorithms. The

existing research on vertical federated clustering is limited [19, 31, 36]. Ding et al. [19] proposed

an approximation algorithm for the distributed dimensions scenarios of 𝑘-means clustering. This

algorithm is executed by computing the global centers, which are derived from the product of

local centers. Huang et al. [31] conducted research on communication-efficient approaches for

vertical federated clustering, with a particular focus on scalability. They developed a comprehensive

paradigm focused on the coreset. Li et al. [36] introduced a method to ensure differential privacy

in vertical federated clustering with multiple clients and an untrusted server by having each data

party generate a differentially private data synopsis.

Fair clustering. In recent years, various approximation algorithms have been proposed for fair

clustering. One significant contribution in this area is the work by Chierichetti et al. [15], which

extended the concept of disparate impact to clustering problems. To address the problem of fair

clustering when there are only two groups (e.g., males or females), they proposed the concept of

fairlets. Several studies have aimed to extend the this notion since its inception [4, 11, 12, 24, 27, 30,

54]. As Chierichetti et al. [15] focused solely on two protected groups, Bera et al. [11] introduced a

more general concept that applies to any protected group in each cluster, making it one of the most

progressive notions of fairness. In addition, Bera et al. [11] proposed a post-processing method for

fair clustering by solving LP problems. Their method enables the conversion of vanilla clustering

results into fair patterns. Subsequently, several studies [12, 27, 30, 46] have extended the framework

proposed by Bera et al. [11].

Fast clustering. In the context of VFL, fast clustering usually entails the consideration of reducing

both communication and computational complexities. For communication complexity, the method

proposed by Ding et al. [19] provides a communication complexity of 𝑂 (𝑛𝑇 ). Huang et al. [31]

provided a coreset construction method whose communication complexity is 𝑂 (𝑛). Li et al. [36]
introduced a differentially private framework for vertical federated clustering, which achieves

a communication complexity that is independent of 𝑛. Notably, this algorithm has the lowest

observed communication complexity among existing approaches. Regarding the computational

complexity, the state-of-the-art method for fair 𝑘-means is the Fair-LP proposed by Bera et al. [11],

which involves solving the LP with 𝑛𝑘 variables. Harb and Lam [27] improved the efficiency of

fair 𝑘-center objective by reducing the number of LP variables. Bera et al. [12] proposed to use

a MapReduce framework to speed up the fair 𝑘-center. Along with [27], these approaches are

unsuitable for the 𝑘-means objective. Meanwhile, Huang et al. [30] proposed a coreset for fair

clustering to improve computational efficiency. However, this technique impacts both the clustering

utility and the fairness of the resultant clusters. Nie et al. [41] introduced a coordinate descent

method for 𝑘-means that exhibits equivalent computational complexity to that of the well-known

Lloyd’s heuristic, yet possesses the potential to converge to better local minima. This paper does

not delve into alternative techniques that facilitate the acceleration of 𝑘-means, such as those based

on indexing or hardware. Interested readers may refer to the review provided by Wang et al. [47]

for a comprehensive treatment of these methods.

Remarks. 1) Existing fair 𝑘-means implementations rely on pre-processing and post-processing,

potentially leading to legal implications and an inexplicable model; 2) Existing 𝑘-means works rely

on Lloyd’s heuristic, but it often converges to a low-quality local minimum, resulting in suboptimal

clustering utility; 3) Current VFL framework for 𝑘-means involves cumbersome computation with

a weighted grid based on Cartesian product of clients’ local centers; 4) Existing federated and fair

clustering research faces efficiency issues in communication and computation complexity. When
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dealing with large datasets, such as those containing millions of points, existing methods cannot

provide a satisfactory solution efficiently.

3 PRELIMINARIES
As is well known, the 𝑘-means problem is a bivariate optimization problem, and Lloyd’s heuristic
solves the 𝑘-means problem by assigning each point to its nearest center and refining the center

iteratively. Recently, Nie et al. [41] proposed to transform the bivariate optimization problem of

𝑘-means into a univariate one, where only the assignment of sample points needs to be considered,

without solving for the centers. They also introduced a coordinate descent method for solving

𝑘-means (CDKM). Here, we provide the specific form of the 𝑘-means without centers and the

solving process of CDKM. Finally, we elaborate on the notion of fairness proposed by Bera et al.

[11] and transfer it into a matrix multiplication form.

3.1 𝑘-means without Centers
Nie et al. [41] proposed a coordinate descent (CD) method for 𝑘-means clustering. They converted the

objective function of 𝑘-means problem into a trace minimization problem where the optimization

variable is an indicator matrix 𝑭 . Note that the centers are eliminated in this objective function,

and the indicator matrix 𝑭 is the unique optimization variable. Then they solve 𝑭 by CD from the

first row to the last row. Now we first give a brief introduction of their problem formulations. Let

𝑿 ∈ R𝑑×𝑛 denote a matrix of 𝑛 data points, each column of 𝑿 represents a data point denoted as

𝒙𝑖 ∈ R𝑑 . 𝑘-means clustering problem aims to find a setZ = {𝑍1, 𝑍2, · · · , 𝑍𝑘 } of 𝑘 clusters such that

the sum of squared error is minimized,

min

𝑍

𝑘∑︁
𝑗=1

∑︁
𝒙𝑖 ∈𝑍 𝑗

| |𝒙𝑖 − 𝒄 𝑗 | |22, (1)

where 𝒄 𝑗 = 1

|𝑍 𝑗 |
∑

𝒙𝑖 ∈𝑍 𝑗
𝒙𝑖 is the 𝑗-th column of center matrix 𝑪 ∈ R𝑑×𝑘 . The problem (1) is

equivalent to

min

𝑭 ∈𝐼𝑛𝑑,𝑪

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

| |𝒙𝑖 − 𝒄 𝑗 | |22 𝑓𝑖 𝑗 = min

𝑭 ∈𝐼𝑛𝑑,𝑪
| |𝑿 − 𝑪𝑭 T | |2

F
, (2)

where | | · | |F denotes Frobenius norm defined as the square root of the sum of the squared values

of all elements in the matrix, and 𝑭 ∈ R𝑛×𝑘 is an indicator matrix composed of 𝑛 one-hot vectors.

For example, if 𝒙𝑖 ∈ 𝑍 𝑗 , then 𝑓𝑖 𝑗 = 1, other elements in the 𝑖-th row of 𝑭 are zero. By taking

the derivative with respect to 𝑪 and setting it to zero, the equation 𝑪 = 𝑿𝑭 (𝑭 T𝑭 )−1 is obtained.
Substituting this equation into (2), we can reformulate (2) to a trace minimization problem,

min

𝑭 ∈𝐼𝑛𝑑
𝜙 (𝑭 ) = min

𝑭 ∈𝐼𝑛𝑑
−𝑇𝑟 ((𝑭 T𝑭 )−1𝑭 T𝑿T𝑿𝑭 ). (3)

Since 𝑭 T𝑭 is a diagonal matrix with ( 𝑗, 𝑗) element equaling to 𝒇T

𝑗 𝒇 𝑗 , where 𝒇 𝑗 is the 𝑗-th column

of 𝑭 , the optimization problem (3) can be rewritten as follows:

min

𝑭 ∈𝐼𝑛𝑑
𝜙 (𝑭 ) = min

𝑭 ∈𝐼𝑛𝑑
−

𝑘∑︁
𝑗=1

𝒇T

𝑗𝑿
T𝑿𝒇 𝑗

𝒇T

𝑗 𝒇 𝑗

. (4)

Note that (4) is a nonconvex optimization problem whose optimization variable is an indicator

matrix. Conventional gradient-based optimization methods, such as stochastic gradient descent

(SGD), cannot be applied to this optimization problem due to its non-differentiability. To address

this issue, Nie et al. [41] proposed a CD method to solve problem (4). Next, we review this method.
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Table 1. Summary of notations

Notation Description

𝑿 ∈ R𝑑×𝑛 The dataset

Z = {𝑍1, 𝑍2, · · · , 𝑍𝑘 } The set of 𝑘 clusters

𝑪 ∈ R𝑑×𝑘 The center matrix

𝑭 ∈ R𝑛×𝑘 The indicator matrix

𝑷 ∈ R𝑛×𝐿 The color matrix

{𝐺1,𝐺2, · · · ,𝐺𝐿} The set of protected groups

𝚯ℎ ∈ R𝐿ℎ×𝑘 The auxiliary variable on each client side

𝑼ℎ ∈ R𝐿ℎ×𝑘 The dual variable on each client side

𝜶 , 𝜷 ∈ R𝐿×𝑘 The upper and lower bounds in RD and MP

3.2 Description of CDKM
Nie et al. [41] considered a CD method to update each row of 𝑭 by decomposing (4) into 𝑛

subproblems. Let {𝑭 (1)
𝑖

, 𝑭 (2)
𝑖

, · · · , 𝑭 (𝑘 )
𝑖
} be a set of 𝑘 matrices when updating the 𝑖-th row of 𝑭 ,

the only difference between 𝑭 (𝑚)
𝑖

and 𝑭 (𝑙 )
𝑖

is the (𝑖,𝑚)-element and the (𝑖, 𝑙)-element,𝑚 ≠ 𝑙 and

𝑚, 𝑙 ∈ [𝑘], where [𝑘] is short for {1, 2, · · · , 𝑘}. The (𝑖,𝑚)-element of 𝑭 (𝑚)
𝑖

is 1, the rest elements

are 0, while the (𝑖, 𝑙)-element of 𝑭 (𝑙 )
𝑖

is 1, the rest elements are 0. For simplicity, we denote 𝑗-th

column of 𝑭 (𝑚)
𝑖

by 𝒇 (𝑚)
𝑗

where we omit the subscript 𝑖 . Then the subproblems are given as follows:

min

𝑚∈[𝑘 ]
𝜙 (𝑭 (𝑚)

𝑖
) = min

𝑚∈[𝑘 ]
−

𝑘∑︁
𝑗=1

(𝒇 (𝑚)
𝑗
)T𝑿T𝑿𝒇 (𝑚)

𝑗

(𝒇 (𝑚)
𝑗
)T𝒇 (𝑚)

𝑗

. (5)

To reduce the complexity and simplify the objective function, an auxiliary variable 𝑭 (0)
𝑖
∈ R𝑛×𝑘

is introduced. Elements in the 𝑖-th row of 𝑭 (0)
𝑖

are zero, while the other elements are same with

𝑭 (𝑚)
𝑖

. Next, we present an equivalent formulation for problem (5):

min

𝑚∈[𝑘 ]
𝜑 (𝑖,𝑚) = min

𝑚∈[𝑘 ]
𝜙 (𝑭 (𝑚)

𝑖
) − 𝜙 (𝑭 (0)

𝑖
)

= min

𝑚∈[𝑘 ]
−

𝑘∑︁
𝑗=1

(𝒇 (𝑚)
𝑗
)T𝑿T𝑿𝒇 (𝑚)

𝑗

(𝒇 (𝑚)
𝑗
)T𝒇 (𝑚)

𝑗

+
𝑘∑︁
𝑗=1

(𝒇 (0)
𝑗
)T𝑿T𝑿𝒇 (0)

𝑗

(𝒇 (0)
𝑗
)T𝒇 (0)

𝑗

= min

𝑚∈[𝑘 ]

(𝒇 (0)𝑚 )T𝑿T𝑿𝒇 (0)𝑚

(𝒇 (0)𝑚 )T𝒇 (0)𝑚

− (𝒇
(𝑚)
𝑚 )T𝑿T𝑿𝒇 (𝑚)𝑚

(𝒇 (𝑚)𝑚 )T𝒇 (𝑚)𝑚

. (6)

Note that the problem (6) has only two terms, while the problem (5) has 𝑘 terms. However, both

optimization problems are equivalent, and this equivalence can greatly reduce the complexity.

When updating the 𝑖-th row of 𝑭 , 𝑘 + 1 variables, namely 𝑭 (0)
𝑖

, · · · , 𝑭 (𝑘 )
𝑖

, must be stored in memory.

To optimize memory usage, Nie et al. [41] propose the replacement of 𝑭 (𝑚)
𝑖

,𝑚 ∈ [𝑘], with 𝑭 - the

current indicator matrix pre-stored in memory. The index of element 1 in the 𝑖-th row of 𝑭 is stored

as 𝑟, 𝑟 ∈ [𝑘]. Denoting 𝒇 (𝑚)𝑚 as the𝑚-th column of 𝑭 (𝑚)
𝑖

, 𝒇 (0)𝑚 as the𝑚-th column of 𝑭 (0)
𝑖

, and 𝒇𝑚
as the𝑚-th column of 𝑭 , two situations arise for (6):

• Situation 1:𝑚 = 𝑟 , which means the 𝑖-th element of 𝒇 (𝑚)𝑚 and 𝒇𝑚 is 1. Then we have 𝒇 (𝑚)𝑚 = 𝒇𝑚 .

Let 𝜹𝑚 = 𝒇𝑚 − 𝒇
(0)
𝑚 , that is the 𝑖-th element of 𝜹𝑚 is 1, the other elements are 0. Then we have
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the following equations:

𝑿𝒇𝑚 = 𝑿 (𝒇 (0)𝑚 + 𝜹𝑚) = 𝑿𝒇 (0)𝑚 + 𝒙𝑖 ,

(𝒇 (0)𝑚 )T𝒇 (0)𝑚 = (𝒇𝑚 − 𝜹𝑚)T (𝒇𝑚 − 𝜹𝑚) = 𝒇T

𝑚𝒇𝑚 − 1.

Substitute the above equations into (6), we have:

𝜑 (𝑖,𝑚) =
𝒇T

𝑚𝑿
T𝑿𝒇𝑚 − 2𝒙T

𝑖 𝑿𝒇𝑚 + 𝒙T

𝑖 𝒙𝑖

𝒇T

𝑚𝒇𝑚 − 1
−
𝒇T

𝑚𝑿
T𝑿𝒇𝑚

𝒇T

𝑚𝒇𝑚
. (7)

• Situation 2:𝑚 ≠ 𝑟 , which means the 𝑖-th element of 𝒇 (0)𝑚 and 𝒇𝑚 is 0. Then we have 𝒇 (0)𝑚 = 𝒇𝑚 .

Let 𝜹𝑚 = 𝒇 (𝑚)𝑚 − 𝒇𝑚 , that is the 𝑖-th element of 𝜹𝑚 is 1, the other elements are 0. Then we have

the following equations:

𝑿𝒇 (𝑚)𝑚 = 𝑿 (𝒇𝑚 + 𝜹𝑚) = 𝑿𝒇𝑚 + 𝒙𝑖 ,

(𝒇 (𝑚)𝑚 )T𝒇 (𝑚)𝑚 = (𝒇𝑚 + 𝜹𝑚)T (𝒇𝑚 + 𝜹𝑚) = 𝒇T

𝑚𝒇𝑚 + 1.

Substitute the above equations into (6), we have:

𝜑 (𝑖,𝑚) =
𝒇T

𝑚𝑿
T𝑿𝒇𝑚

𝒇T

𝑚𝒇𝑚
−
𝒇T

𝑚𝑿
T𝑿𝒇𝑚 + 2𝒙T

𝑖 𝑿𝒇𝑚 + 𝒙T

𝑖 𝒙𝑖

𝒇T

𝑚𝒇𝑚 + 1
. (8)

Combining the above two situations, we rewrite the objective function as follows:

𝜑 (𝑖,𝑚) =


𝒇 T𝑚𝑿T𝑿𝒇𝑚−2𝒙T

𝑖 𝑿𝒇𝑚+𝒙T

𝑖 𝒙𝑖

𝒇 T𝑚𝒇𝑚−1
− 𝒇 T𝑚𝑿T𝑿𝒇𝑚

𝒇 T𝑚𝒇𝑚
, 𝑚 = 𝑟,

𝒇 T𝑚𝑿T𝑿𝒇𝑚
𝒇 T𝑚𝒇𝑚

− 𝒇 T𝑚𝑿T𝑿𝒇𝑚+2𝒙T

𝑖 𝑿𝒇𝑚+𝒙T

𝑖 𝒙𝑖

𝒇 T𝑚𝒇𝑚+1
, 𝑚 ≠ 𝑟 .

(9)

Based on (9) and the nature of CD, the updating function of the 𝑖-th row of 𝑭 is given as follows:

𝑓𝑖𝑠 =

{
1, 𝑠 = argmin𝑚 𝜑 (𝑖,𝑚),
0, otherwise,

(10)

where 𝑠 represents the updated index of 𝑭 , 𝑓𝑖𝑠 is the (𝑖, 𝑠) element in 𝑭 . To accelerate convergence,

Nie et al. [41] propose an incremental algorithm, also referred to as incremental updating [17].

It reduces computational costs by computing only the changed terms, leading to faster results

generation and reduced storage space requirements compared to recomputing the entire terms.

Consider the objective function defined in equation (9), which contains four terms: 𝒇T

𝑚𝑿
T𝑿𝒇𝑚 ,

𝑿𝒇𝑚 , 𝒇T

𝑚𝒇𝑚 , and 𝒙T

𝑖 𝒙𝑖 . The value of 𝒙
T

𝑖 𝒙𝑖 can be precomputed and stored in memory. For updating

the other three terms, two scenarios arise: when 𝑟 = 𝑠 , the indicator matrix 𝑭 remains unchanged,

and consequently, the three terms do not require updating. However, when 𝑟 ≠ 𝑠 , the (𝑖, 𝑟 ) and
(𝑖, 𝑠) elements of the indicator matrix 𝑭 should be updated, that is, 𝒇 𝑖𝑟 and 𝒇 𝑖𝑠 should be exchanged.
We present the updated formulas as follows:

𝑿𝒇 𝑟 ← 𝑿𝒇 𝑟 − 𝒙𝑖 , 𝑿𝒇 𝑠 ← 𝑿𝒇 𝑠 + 𝒙𝑖 ,
𝒇T

𝑟 𝒇 𝑟 ← 𝒇T

𝑟 𝒇 𝑟 − 1, 𝒇T

𝑠 𝒇 𝑠 ← 𝒇T

𝑠 𝒇 𝑠 + 1,
𝒇T

𝑟 𝑿
T𝑿𝒇 𝑟 ←𝒇T

𝑟 𝑿
T𝑿𝒇 𝑟 − 2𝒙T

𝑖 𝑿𝒇 𝑟 + 𝒙T

𝑖 𝒙𝑖 ,

𝒇T

𝑠 𝑿
T𝑿𝒇 𝑠 ←𝒇T

𝑠 𝑿
T𝑿𝒇 𝑠 + 2𝒙T

𝑖 𝑿𝒇 𝑠 + 𝒙T

𝑖 𝒙𝑖 .

(11)

As shown in Algorithm 1, CDKM solves 𝑭 by computing the objective values and updating the

parameters (Lines 5-7) iteratively until converge. Next, we review the notion of fairness.
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Algorithm 1: Coordinate descent for 𝑘-means

Input: 𝑿 : the dataset, 𝑘 : # of clusters, 𝑛: # of points.

Output: 𝑭 : the indicator matrix.

1 Initialize 𝑭 by 𝑘-means++;

2 Compute and store 𝑿𝒇𝑚 , 𝒇
T

𝑚𝒇𝑚 , 𝒇
T

𝑚𝑿
T𝑿𝒇𝑚 , and 𝒙

T

𝑖 𝒙𝑖 ,𝑚 ∈ [𝑘], 𝑖 ∈ [𝑛];
3 while not converge do
4 for 𝑖 = 1 to 𝑛 do
5 Compute 𝜑 (𝑖,𝑚),𝑚 ∈ [𝑘] by (9);

6 Update the 𝑖-th row of 𝑭 by (10);

7 Update 𝑿𝒇𝑚 , 𝒇
T

𝑚𝒇𝑚 , and 𝒇
T

𝑚𝑿
T𝑿𝒇𝑚 by (11);

8 return 𝑭 ;

0.4, 0.3, 0.3
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black black
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Fig. 2. An example of RD and MP, where white, black, and grey points represent three protected groups.

Race      Sex       Marital

Black     Male    Divorced

White   Female   Married

Asian   Female    Single

Sensitive attributes One-hot sensitive attributes

Race

0   1   0

1   0   0

0   0   1 1   0

1   0

Sex

0   1  

0   1   0   

Marital

0   0   1  

0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 0

0 0 1 1 0 1 0 0

 
 
 
 
 
  

Color matrix 

P n L 

1   0   0   

Race Sex Marital

Black Male Divorced

White Female Married

Asian Female Single

Race Sex Marital

0  1  0 0  1 0  0  1

1  0  0 1  0 0  1  0

0  0  1 1  0 1  0  0

Sensitive attributes One-hot sensitive attributes

Fig. 3. An example of the color matrix 𝑷 that has three sensitive attributes: Race, Sex, and Marital; each of
them has several protected groups: Black, White, and Asian; Male and Female; Married, Single, and Divorced.

3.3 Fairness for 𝑘-means
A naive approach to achieve fair 𝑘-means is by removing sensitive attributes, known as fairness
through unawareness [40]. However, this approach has the drawback that proxy attributes can

still reflect sensitive attributes. For example, attributes like height and weight can reflect gender.

Therefore, a more effective definition of fair clustering is to find an assignment that ensures all

protected groups have approximately equal representation in the clusters while simultaneously

minimizing the loss function.We adopt the fair definition in [11] under the disparate impact doctrine

[22]. So far, this definition of fairness, which takes into account multiple sensitive attributes, has

been extensively investigated within the domain of clustering [12]. Each point is additionally given

𝐿 groups, namely {𝐺1,𝐺2, · · · ,𝐺𝐿}. Bera et al. [11] proposed an explicit definition of fairness:

• Restricted Dominance (RD) requires the fraction of samples of group 𝑙 in any cluster is at most 𝛼𝑙 :

|{𝑥𝑖 |𝑥𝑖 ∈ 𝑍 𝑗 , 𝑥𝑖 ∈ 𝐺𝑙 }| ≤ 𝛼𝑙 · |{𝑥𝑖 |𝑥𝑖 ∈ 𝑍 𝑗 }|, 𝑗 ∈ [𝑘], 𝑙 ∈ [𝐿] . (12)

• Minority Protection (MP) requires the fraction of samples of group 𝑙 in any cluster is at least 𝛽𝑙 :

|{𝑥𝑖 |𝑥𝑖 ∈ 𝑍 𝑗 , 𝑥𝑖 ∈ 𝐺𝑙 }| ≥ 𝛽𝑙 · |{𝑥𝑖 |𝑥𝑖 ∈ 𝑍 𝑗 }|, 𝑗 ∈ [𝑘], 𝑙 ∈ [𝐿] . (13)
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Figure 2 shows an example of RD and MP. Bera et al. [11] also proposed loosely fair constraints

which allow for _-additive violation in RD and MP for any 𝑗 ∈ [𝑘], 𝑙 ∈ [𝐿]:
|{𝑥𝑖 |𝑥𝑖 ∈ 𝑍 𝑗 , 𝑥𝑖 ∈ 𝐺𝑙 }| ≤ 𝛼𝑙 · |{𝑥𝑖 |𝑥𝑖 ∈ 𝑍 𝑗 }| + _,
|{𝑥𝑖 |𝑥𝑖 ∈ 𝑍 𝑗 , 𝑥𝑖 ∈ 𝐺𝑙 }| ≥ 𝛽𝑙 · |{𝑥𝑖 |𝑥𝑖 ∈ 𝑍 𝑗 }| − _.

We can rewrite the notion of fairness in terms of matrix multiplication. Let 𝑷 ∈ R𝑛×𝐿 be a

color matrix of 𝑿 , where each row of 𝑷 is a concatenated one-hot vector. An example of 𝑷 , which
contains three sensitive attributes and eight protected groups, is shown in Figure 3. By utilizing the

color matrix, we can redefine the concepts of RD and MP as follows:

𝛽𝑙 ≤
𝒑T

𝑙
𝒇 𝑗

𝒇T

𝑗 𝒇 𝑗

≤ 𝛼𝑙 , 𝑗 ∈ [𝑘], 𝑙 ∈ [𝐿], (14)

where 𝒑𝑙 is the 𝑙-th column of 𝑷 , 𝒑T

𝑙
𝒇 𝑗 is equal to |{𝑥𝑖 |𝑥𝑖 ∈ 𝑍 𝑗 , 𝑥𝑖 ∈ 𝐺𝑙 }| and 𝒇T

𝑗 𝒇 𝑗 is equal to

|{𝑥𝑖 |𝑥𝑖 ∈ 𝑍 𝑗 }|.

4 PROPOSED F3KM
In this section, we aim to address the following three challenges:

• How to address the issue of low iteration efficiency in CDKM, where 𝑛 inner iterations need to

be performed within a single outer iteration (Line 4 in Algorithm 1)?

• How to partition the fair 𝑘-means problem into multiple subproblems and enable each client to

solve their respective subproblem?

• How to formulate the fair 𝑘-means problem as an optimization problem and solve it using an

in-processing method?

In addressing these challenges, we propose the following strategies: 1) we introduce block

coordinate descent for 𝑘-means (BCDKM) as an alternative to CDKM to improve the efficiency of

iterations; 2) we propose partitioning the dataset based on the feature dimensions and dividing the

𝑘-means problem into multiple subproblems. We solve these subproblems in a distributed scenario,

naming this approach DisBCDKM; 3) utilizing the techniques of DisBCDKM, we propose dividing

the fair 𝑘-means problem into multiple subproblems and solving them using the ADMM.

4.1 Proposed DisBCDKM
Next, we propose a block coordinate descent method for 𝑘-means (BCDKM) by solving a block of

subproblems instead of solving a subproblem, and updating a block of rows of 𝑭 instead of updating

a row of 𝑭 . Moreover, we propose a distributed version of BCDKM by partitioning the dataset from

the feature dimensions. Figure 4 shows the comparison among CDKM, BCDKM, and DisBCDKM.

4.1.1 Block coordinate descent for 𝑘-means. Block coordinate descent (BCD) is an iterative algo-

rithm commonly used for solving optimization problems [53]. Similar to CD, BCD is a variable-wise

optimization method. However, BCD differs from CD in that it optimizes a block of variables

concurrently instead of optimizing individual variables sequentially. Let 𝑏 = ⌈𝑛/𝑛𝑏⌉ denote the
number of blocks, where 𝑛𝑏 ≤ 𝑛 represents the number of points in each block

1
, we provide the

details of the BCDKM in Algorithm 2. There are two key differences between the CDKM and

BCDKM algorithms. Firstly, in each iteration of BCDKM, the computing step is performed by

solving a block of subproblems instead of a single subproblem (Line 6). Secondly, the update step is

performed by updating a block of rows in the indicator matrix 𝑭 and adjusting the terms associated

1
Here, we assume that each block contains an equal number of points, except for the last block, which may contain a

different number of points. Specifically, the number of points in the last block equals 𝑛 − (𝑏 − 1) · 𝑛𝑏 .
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Algorithm 2: Block coordinate descent for 𝑘-means

Input: 𝑿 : the dataset, 𝑘 : # of clusters, 𝑛: # of points, 𝑏: # of blocks.

Output: 𝑭 : the indicator matrix.

1 Initialize 𝑭 by 𝑘-means++;

2 Divide {1, 2, · · · , 𝑛} into 𝑏 blocks: {B1, · · · ,B𝑏};
3 Compute and store 𝑿𝒇𝑚 , 𝒇

T

𝑚𝒇𝑚 , 𝒇
T

𝑚𝑿
T𝑿𝒇𝑚 and 𝒙T

𝑖 𝒙𝑖 ,𝑚 ∈ [𝑘], 𝑖 ∈ [𝑛];
4 while not converge do
5 for 𝑖𝑑𝑥 ← 1 to 𝑏 do
6 Compute 𝜑 (𝑖,𝑚), 𝑖 ∈ B𝑖𝑑𝑥 ,𝑚 ∈ [𝑘] by (9);

7 Update the rows within B𝑖𝑑𝑥 of 𝑭 by (10);

8 Update 𝑿𝒇𝑚 , 𝒇
T

𝑚𝒇𝑚 and 𝒇T

𝑚𝑿
T𝑿𝒇𝑚 by (11);

9 return 𝑭 ;

Algorithm 3: Distributed block coordinate descent for 𝑘-means

Input: {𝑿ℎ}𝐻ℎ=1: the partitioned dataset, 𝑘 : # of clusters, 𝑛: # of points, 𝑏: # of blocks.

Output: 𝑭 : the indicator matrix.

1 Initialize 𝑭 by 𝑘-means++;

2 Divide {1, 2, · · · , 𝑛} into 𝑏 blocks: {B1, · · · ,B𝑏};
3 Compute and store 𝑿ℎ𝒇𝑚 , 𝒇

T

𝑚𝒇𝑚 , 𝒇
T

𝑚𝑿
T

ℎ
𝑿ℎ𝒇𝑚 and (𝒙ℎ𝑖 )T𝒙ℎ𝑖 ,𝑚 ∈ [𝑘], 𝑖 ∈ [𝑛] in each

machine;

4 while not converge do
5 for 𝑖𝑑𝑥 ← 1 to 𝑏 do
6 for ℎ ∈ [𝐻 ] in parallel over machines do
7 Compute 𝜑 (𝑚, 𝑖, ℎ) by (17) 𝑖 ∈ B𝑖𝑑𝑥 ,𝑚 ∈ [𝑘];
8 Update the rows within B𝑖𝑑𝑥 of 𝑭 by (18);

9 Update 𝑿ℎ𝒇𝑚 , 𝒇
T

𝑚𝒇𝑚 , 𝒇
T

𝑚𝑿
T

ℎ
𝑿ℎ𝒇𝑚 by (19);

10 return 𝑭 ;

with 𝑭 (Lines 7 and 8), as opposed to updating a single row in 𝑭 . Specifically, when 𝑛𝑏 = 1, CDKM
can be considered as a specific instance of BCDKM. One of the primary advantages of BCDKM is

its ability to compute a set of objective values in a single block, thus reducing the need for frequent

communication during distributed implementation.

Remarks. In CDKM, each parameter is updated 𝑛 times per iteration. In contrast, in BCDKM, each

parameter is updated 𝑏 times per iteration. Consequently, under the same number of iterations,

BCDKM has a lower parameter update frequency compared to CDKM. This difference in parameter

update frequency has an impact on the precision of the parameters and the convergence speed.

Therefore, it is crucial to select an appropriate 𝑛𝑏 to balance the trade-off between utility and the

number of iterations.

4.1.2 Distributed implementation. We write {𝑿ℎ}𝐻ℎ=1 for the given partition of 𝑿 along the feature

dimension over the 𝐻 worker machines. We denote the number of features in each machine by

𝑑ℎ . For each point 𝒙𝑖 ∈ R𝑑 , we write 𝒙𝑖 = (𝒙1

𝑖 , · · · , 𝒙𝐻𝑖 ), where each 𝒙ℎ𝑖 ∈ R𝑑ℎ , ℎ ∈ [𝐻 ], then we
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1 0 0

0 0 1

0 1 0

0 0 1

CDKM

BCDKM
DisBCDKM

0 1 0

1 0 0

1 0 0

0 0 1

0 1 0

0 0 1

0 1 0

0 1 0

1 0 0

Fig. 4. BCDKM updates a block of 𝑭 in each inner iteration compared to CDKM. DisBCDKM allows compu-
tation to be performed across multiple machines and yields the same results as BCDKM.

rewrite (6) as follows:

min

𝑚∈[𝑘 ]
𝜑 (𝑚, 𝑖) = min

𝑚∈[𝑘 ]

(𝒇 (0)𝑚 )T𝑿T𝑿𝒇 (0)𝑚

(𝒇 (0)𝑚 )T𝒇 (0)𝑚

− (𝒇
(𝑚)
𝑚 )T𝑿T𝑿𝒇 (𝑚)𝑚

(𝒇 (𝑚)𝑚 )T𝒇 (𝑚)𝑚

= min

𝑚∈[𝑘 ]

𝐻∑︁
ℎ=1

(𝒇 (0)𝑚 )T𝑿T

ℎ
𝑿ℎ𝒇

(0)
𝑚

(𝒇 (0)𝑚 )T𝒇 (0)𝑚

−
(𝒇 (𝑚)𝑚 )T𝑿T

ℎ
𝑿ℎ𝒇

(𝑚)
𝑚

(𝒇 (𝑚)𝑚 )T𝒇 (𝑚)𝑚

. (15)

Upon closer examination, one can easily discern the decomposability of (15) with respect to each

ℎ. As a result, we formulate a distinct subproblem for each machine:

min

𝑚∈[𝑘 ]
𝜑 (𝑚, 𝑖, ℎ) = min

𝑚∈[𝑘 ]

(𝒇 (0)𝑚 )T𝑿T

ℎ
𝑿ℎ𝒇

(0)
𝑚

(𝒇 (0)𝑚 )T𝒇 (0)𝑚

−
(𝒇 (𝑚)𝑚 )T𝑿T

ℎ
𝑿ℎ𝒇

(𝑚)
𝑚

(𝒇 (𝑚)𝑚 )T𝒇 (𝑚)𝑚

. (16)

Here, we present the objective function directly as the computational process shares similarities

with the CDKM:

𝜑 (𝑚, 𝑖, ℎ) =


𝒇 T𝑚𝑿T

ℎ
𝑿ℎ𝒇𝑚−2(𝒙ℎ𝑖 )T𝑿ℎ𝒇𝑚+(𝒙ℎ𝑖 )T𝒙ℎ𝑖

𝒇 T𝑚𝒇𝑚−1
− 𝒇 T𝑚𝑿T

ℎ
𝑿ℎ𝒇𝑚

𝒇 T𝑚𝒇𝑚
, 𝑚 = 𝑟,

𝒇 T𝑚𝑿T

ℎ
𝑿ℎ𝒇𝑚

𝒇 T𝑚𝒇𝑚
− 𝒇 T𝑚𝑿T

ℎ
𝑿ℎ𝒇𝑚+2(𝒙ℎ𝑖 )T𝑿ℎ𝒇𝑚+(𝒙ℎ𝑖 )T𝒙ℎ𝑖

𝒇 T𝑚𝒇𝑚+1
, 𝑚 ≠ 𝑟 .

(17)

To update the 𝑖-th row of 𝑭 , we aggregate the objective values computed by (17) from each

machine, and incorporate them into our updating formulations:

𝑓𝑖𝑠 =

{
1, 𝑠 = argmin𝑚

∑𝐻
ℎ=1

𝜑 (𝑚, 𝑖, ℎ),
0, otherwise.

(18)

Consider the four terms presented in the objective function (17), namely 𝒇T

𝑚𝒇𝑚 , 𝒇
T

𝑚𝑿
T

ℎ
𝑿ℎ𝒇𝑚 ,

𝑿ℎ𝒇𝑚 , and (𝒙ℎ𝑖 )T𝒙ℎ𝑖 . It is worth noting that (𝒙ℎ𝑖 )T𝒙ℎ𝑖 is a constant value and does not require

updating. Let 𝑟 represent the current index of 1 in the 𝑖-th row of indicator matrix 𝑭 . If 𝑟 = 𝑠 , then

𝑭 remains unchanged. However, if 𝑟 ≠ 𝑠 , the following updated formulas can be directly applied,

leveraging the computational similarities with CDKM:

𝒇T

𝑟 𝒇 𝑟 ←𝒇T

𝑟 𝒇 𝑟 − 1; 𝒇T

𝑠 𝒇 𝑠 ← 𝒇T

𝑠 𝒇 𝑠 + 1;
𝑿ℎ𝒇 𝑟 ←𝑿ℎ𝒇 𝑟 − 𝒙ℎ𝑖 ; 𝑿ℎ𝒇 𝑠 ← 𝑿ℎ𝒇 𝑠 + 𝒙ℎ𝑖 ;

𝒇T

𝑟 𝑿
T

ℎ
𝑿ℎ𝒇 𝑟 ←𝒇T

𝑟 𝑿
T

ℎ
𝑿ℎ𝒇 𝑟 − 2(𝒙ℎ𝑖 )T𝑿ℎ𝒇 𝑟 + (𝒙ℎ𝑖 )T𝒙ℎ𝑖 ;

𝒇T

𝑠 𝑿
T

ℎ
𝑿ℎ𝒇 𝑠 ←𝒇T

𝑠 𝑿
T

ℎ
𝑿ℎ𝒇 𝑠 + 2(𝒙ℎ𝑖 )T𝑿ℎ𝒇 𝑠 + (𝒙ℎ𝑖 )T𝒙ℎ𝑖 .

(19)

Algorithm 3 presents a detailed description of DisBCDKM. At each iteration, the central machine

engages in 𝑂 (𝑏) communications with each local machine to compute the objective values and
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update the parameters (Lines 6-9). If the CDKMwas employed here, the number of communications

would increase to 𝑂 (𝑛).
Remarks. The separability property of the optimization problem (15) ensures that our distributed

scheme does not adversely affect solution accuracy, thereby enabling us to obtain results that are

fully consistent with those obtained from the centralized scenario.

4.2 Description of F3KM
We present F3KM, a novel algorithm that enables equitable allocation of protected groups among

clusters while maintaining approximately equal representation in the context of VFL. To achieve

this, we first define a data-local subproblem that can be solved individually by each client, with

access restricted to locally-stored data. Using an ADMM on the client side, we solve this subproblem,

and the server aggregates the results from each client.

The framework of F3KM is presented in Figure 5. It is noteworthy that in the context of VFL,

each client possesses distinct feature data from the same users, and each user’s data is stored locally.

Figure 6 shows an example of the computation process of F3KM on both the client and server sides.

Details of F3KM on the server and client sides are delineated in Algorithms 4 and 5. On the server

side, 𝑭 is initialized, and instructions are sent to each client to initialize their respective parameters

(Line 4 in Algorithm 4). Once initialization is complete (Line 2 in Algorithm 5), the server sends

instructions to each client (Line 8 in Algorithm 4), and the clients compute the objective values

using their owned data and return the computed values to the server (Lines 4 and 5 in Algorithm

5). The server aggregates the objective values and subsequently updates the indicator matrix 𝑭 ,
then instructions are sent to each client to update their local parameters (Lines 9-12 in Algorithm 4

and Lines 6-11 in Algorithm 5). The iterative process is continued until convergence is achieved,

following which resulting indicator matrix 𝑭 is generated.

4.2.1 Local subproblem in F3KM. In Section 3.3, we have presented the fair constraints in the form

of matrix multiplication. Next, we integrate the fairness constraints with the objective function of

𝑘-means as follows:

min

𝑭 ∈𝐼𝑛𝑑
−

𝑘∑︁
𝑗=1

𝒇T

𝑗𝑿
T𝑿𝒇 𝑗

𝒇T

𝑗 𝒇 𝑗

𝑠 .𝑡 . 𝛽𝑙 ≤
𝒑T

𝑙
𝒇 𝑗

𝒇T

𝑗 𝒇 𝑗

≤ 𝛼𝑙 , 𝑗 ∈ [𝑘], 𝑙 ∈ [𝐿] . (20)

In Section 4.1, we demonstrated that the objective function given in (20) can be decomposed over

𝐻 clients. Next, we prove that the constraints can also be decomposed. To achieve this, we define a

local color matrix 𝑷ℎ ∈ R𝑛×𝐿ℎ with respect to 𝑿ℎ , where
∑𝐻

ℎ=1
𝐿ℎ = 𝐿. Then, we can rewrite the

constraints in (20) as follows:

𝛽𝑙 ≤
(𝒑ℎ

𝑙
)T𝒇 𝑗

𝒇T

𝑗 𝒇 𝑗

≤ 𝛼𝑙 , 𝑗 ∈ [𝑘], 𝑙 ∈ [𝐿ℎ], ℎ ∈ [𝐻 ], (21)

where 𝒑ℎ
𝑙
is the 𝑙-th column of 𝑷ℎ . Upon closer examination, one can easily discern the decompos-

ability of (21) with respect to each ℎ. As a result, we formulate a subproblem for each client:

min

𝑭 ∈𝐼𝑛𝑑
−

𝑘∑︁
𝑗=1

𝒇T

𝑗𝑿
T

ℎ
𝑿ℎ𝒇 𝑗

𝒇T

𝑗 𝒇 𝑗

s.t. 𝛽𝑙 ≤
(𝒑ℎ

𝑙
)T𝒇 𝑗

𝒇T

𝑗 𝒇 𝑗

≤ 𝛼𝑙 , 𝑗 ∈ [𝑘], 𝑙 ∈ [𝐿ℎ] . (22)

In the context of VFL, we assume that the data owned by each client is composed of different

features from the same users [51], such that there is no overlap in the color matrix 𝑷ℎ for each

client. For instance, if one client holds the gender feature, then other clients would not hold that
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Algorithm 4: F3KM on the server side

Input: 𝑛: # of points, 𝑘 : # of clusters, 𝑏: # of blocks.
Output: 𝑭 : the indicator matrix.

1 Initialize 𝑭 by 𝑘-means++;

2 Divide [𝑛] into 𝑏 blocks: {B1, · · · ,B𝑏};
3 for ℎ ∈ [𝐻 ] in parallel over clients do
4 Call Initialization in Algorithm 5;

5 while not converge do
6 for 𝑖𝑑𝑥 ← 1 to 𝑏 do
7 for ℎ ∈ [𝐻 ] in parallel over clients do
8 Compute L(𝑚, 𝑖, ℎ), 𝑖 ∈ B𝑖𝑑𝑥 ,𝑚 ∈ [𝑘] by calling ComputeObj in Algorithm 5;

9 Update the rows within B𝑖𝑑𝑥 of 𝑭 by (29);

10 Call Update_F in Algorithm 5;

11 for ℎ ∈ [𝐻 ] in parallel over clients do
12 Call UpdateParams in Algorithm 5;

13 return 𝑭 ;

Algorithm 5: F3KM on the client side

Input: 𝑿ℎ : local dataset, 𝑷ℎ : local color matrix, 𝝆: step size, 𝜶 , 𝜷 : maximum and minimum

ratio of protected groups in each cluster, 𝑭 ,𝚯ℎ, 𝑼ℎ : primal and dual variables.

1 if the server calls Initialization then
2 Compute and store 𝑿ℎ𝒇𝑚 , 𝒇

T

𝑚𝒇𝑚 , 𝒇
T

𝑚𝑿
T

ℎ
𝑿ℎ𝒇𝑚 , (𝒙ℎ𝑖 )T𝒙ℎ𝑖 , (𝒑ℎ

𝑙
)T𝒇𝑚 ,

𝑚 ∈ [𝑘], 𝑖 ∈ [𝑛], 𝑙 ∈ [𝐿ℎ] locally;
3 if the server calls ComputeObj then
4 Compute L(𝑚, 𝑖, ℎ),𝑚 ∈ [𝑘], 𝑖 ∈ B𝑖𝑑𝑥 by (27) and (28);

5 Upload L(𝑚, 𝑖, ℎ),𝑚 ∈ [𝑘], 𝑖 ∈ B𝑖𝑑𝑥 to the server;

6 else if the server calls Update_F then
7 Update 𝒇T

𝑚𝑿
T

ℎ
𝑿ℎ𝒇𝑚 , 𝒇

T

𝑚𝒇𝑚 and 𝑿ℎ𝒇𝑚 by (19);

8 Update (𝒑ℎ
𝑙
)T𝒇𝑚 by (30);

9 else if the server calls UpdateParams then
10 Update and store 𝚯ℎ by (31) locally;

11 Update and store 𝑼ℎ by (32) locally;

same feature. If feature overlap occurs, each client’s data needs to be preprocessed to ensure that

each feature is computed only once. For example, clients can locally compute the hash value or

summary of features and share it with other clients. The hash value or summary does not reveal the

original feature values but enables determining their similarity. Based on the hash value or summary

provided by other clients, clients can decide whether to use their own features for training.

4.2.2 ADMM as a local solver. In this section, we present an ADMM approach for the 𝑘-means with

fair constraints in the VFL scenario. The use of ADMM is motivated by its great performance on

non-convex and non-smooth optimization problems [48]. Specifically, for each Gauss-Seidel type

minimization subproblem with primal and dual variables in the Lagrangian function, we update all

variables cyclically while fixing the remaining variables at their last updated values. Firstly, We

consider transforming the inequality constraints in (22) into equality constraints by introducing an
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Fig. 5. General framework of F3KM.
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𝑘𝑘-means++

1,2, 3,4,
1,2,

= 1, 2.

T T
m h h m

h m
T

m m
h T h
i i

h T
l m

f f
X

f f

X X ,
f ,

,

,

,  )
i =   

l
h

(x ) x

(p f

=   C
om

pu
te

 a
nd

 s
to

re

Update_F

Initialize 𝑭𝑭

1 0 0

0 0 1

0 1 0

0 0 1

3.4 2.5 1.8

6.3 1.7 4.4

2.2 6.7 1.2

1.1 3.9 4.7

𝑭𝑭-solving procedure

21 231, 0f f=  =

Complete 
solving 𝑭𝑭

Complete solving 
Θh and 𝑼𝑼h

Client 1

UID Race Loan

1 Black 10K

2 Black 5K

3 White 100K

4 White 50K

Race

0 1

0 1

1 0

1 0

Client 2

1.1 0.9 0.6

2.2 0.3 3.1

0.5 3.5 0.8

0.5 1.4 0.2

2.3 1.6 1.2

4.1 1.4 1.3

1.7 3.2 0.4

0.6 2.5 4.5

C
om

pu
te

 lo
ca

l 
ob

je
ct

iv
e 

va
lu

es

Θ-solving procedure 𝑼𝑼-solving procedure UpdateParams

Fig. 6. An example of Algorithms 4 and 5.

auxiliary variable 𝚯ℎ ∈ R𝐿ℎ×𝑘 :

min

𝑭 ∈𝐼𝑛𝑑
𝚯ℎ

−
𝑘∑︁
𝑗=1

𝒇T

𝑗𝑿
T

ℎ
𝑿ℎ𝒇 𝑗

𝒇T

𝑗 𝒇 𝑗

s.t.

{
\𝑙 𝑗 =

(𝒑ℎ
𝑙
)T𝒇 𝑗

𝒇 T𝑗 𝒇 𝑗

,

𝛽𝑙 ≤ \𝑙 𝑗 ≤ 𝛼𝑙 ,
𝑗 ∈ [𝑘], 𝑙 ∈ [𝐿ℎ], (23)

where \𝑙 𝑗 is the (𝑙, 𝑗)-element of 𝚯ℎ . Given our intention to employ the ADMM for the resolution

of (23), we proceed to present the Lagrangian function of (23) as follows:

L(𝑭 , 𝑼ℎ,𝚯ℎ) = −
𝑘∑︁
𝑗=1

𝒇T

𝑗𝑿
T

ℎ
𝑿ℎ𝒇 𝑗

𝒇T

𝑗 𝒇 𝑗

+
𝐿ℎ∑︁
𝑙=1

𝑘∑︁
𝑗=1

𝑢𝑙 𝑗 (\𝑙 𝑗 −
(𝒑ℎ

𝑙
)T𝒇 𝑗

𝒇T

𝑗 𝒇 𝑗

) +
𝐿ℎ∑︁
𝑙=1

𝑘∑︁
𝑗=1

𝜌

2

(\𝑙 𝑗 −
(𝒑ℎ

𝑙
)T𝒇 𝑗

𝒇T

𝑗 𝒇 𝑗

)2, (24)

where Θℎ ∈ 𝑽 , and 𝑽 is a set of box constraints defined as 𝑽 = {𝒗 ∈ R𝐿ℎ |𝛽𝑙 ≤ 𝑣𝑙 ≤ 𝛼𝑙 , 𝑙 =

1, 2, · · · , 𝐿ℎ}𝑘 . Moreover, 𝑼ℎ ∈ R𝐿ℎ×𝑘 is a matrix of Lagrangian multipliers, 𝑢𝑙 𝑗 denotes the (𝑙, 𝑗)-
element of 𝑼ℎ , and 𝜌 denotes the penalty parameter [13]. To solve (24), 𝑭 ,𝚯ℎ and 𝑼ℎ should be

solved recurrently until converge:

𝑭 (𝑡 ) = argmin

𝑭
L(𝑭 , 𝑼 (𝑡−1)

ℎ
,𝚯
(𝑡−1)
ℎ
),

𝚯
(𝑡 )
ℎ

= argmin

Θℎ∈𝑽
L(𝑭 (𝑡 ) , 𝑼 (𝑡−1)

ℎ
,𝚯ℎ),

𝑼 (𝑡 )
ℎ

=𝑼 (𝑡−1)
ℎ

+ 𝜌
𝜕L(𝑭 (𝑡 ) , 𝑼ℎ,𝚯

(𝑡 )
ℎ
)

𝜕𝑼ℎ

,

(25)

where 𝑡 denotes the iteration index. For sake of notion, we will write 𝑭 instead of 𝑭 (𝑡 ) , 𝚯 instead

of 𝚯
(𝑡 )

and 𝑼 instead of 𝑼 (𝑡 ) . Next, we present the solving procedures for each variable.

1) 𝑭 -solving procedure. We consider applying DisBCDKM to solve 𝑭 , while treating 𝑼 and 𝚯

as constants during the optimization process. To simplify the Lagrangian function, we adopt the

technique described in equation (6), effectively reducing the number of terms in the objective

function. Next, we introduce {𝑭 (0)
𝑖

, 𝑭 (1)
𝑖

, · · · , 𝑭 (𝑘 )
𝑖
} to simplify the objective function and reduce
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the complexity, the description of these matrices has been given in Section 3.2,

L(𝑚, 𝑖, ℎ) = L(𝑭 (𝑚)
𝑖

, 𝑼ℎ,𝚯ℎ) − L(𝑭 (0)𝑖
, 𝑼ℎ,𝚯ℎ) = −

𝑘∑︁
𝑗=1

(𝒇 (𝑚)
𝑗
)T𝑿T

ℎ
𝑿ℎ𝒇

(𝑚)
𝑗

(𝒇 (𝑚)
𝑗
)T𝒇 (𝑚)

𝑗

+

𝑘∑︁
𝑗=1

(𝒇 (0)
𝑗
)T𝑿T

ℎ
𝑿ℎ𝒇

(0)
𝑗

(𝒇 (0)
𝑗
)T𝒇 (0)

𝑗

+
𝐿ℎ∑︁
𝑙=1

𝑘∑︁
𝑗=1

𝑢𝑙 𝑗 (\𝑙 𝑗 −
(𝒑ℎ

𝑙
)T𝒇 (𝑚)

𝑗

(𝒇 (𝑚)
𝑗
)T𝒇 (𝑚)

𝑗

) −
𝐿ℎ∑︁
𝑙=1

𝑘∑︁
𝑗=1

𝑢𝑙 𝑗 (\𝑙 𝑗−

(𝒑ℎ
𝑙
)T𝒇 (0)

𝑗

(𝒇 (0)
𝑗
)T𝒇 (0)

𝑗

) +
𝐿ℎ∑︁
𝑙=1

𝑘∑︁
𝑗=1

𝜌

2

(\𝑙 𝑗 −
(𝒑ℎ

𝑙
)T𝒇 (𝑚)

𝑗

(𝒇 (𝑚)
𝑗
)T𝒇 (𝑚)

𝑗

)2 −
𝐿ℎ∑︁
𝑙=1

𝑘∑︁
𝑗=1

𝜌

2

(\𝑙 𝑗 −
(𝒑ℎ

𝑙
)T𝒇 (0)

𝑗

(𝒇 (0)
𝑗
)T𝒇 (0)

𝑗

)2

=
(𝒇 (0)𝑚 )T𝑿T

ℎ
𝑿ℎ𝒇

(0)
𝑚

(𝒇 (0)𝑚 )T𝒇 (0)𝑚

−
(𝒇 (𝑚)𝑚 )T𝑿T

ℎ
𝑿ℎ𝒇

(𝑚)
𝑚

(𝒇 (𝑚)𝑚 )T𝒇 (𝑚)𝑚

+
𝐿ℎ∑︁
𝑙=1

𝑢𝑙𝑚 (
(𝒑ℎ

𝑙
)T𝒇 (0)𝑚

(𝒇 (0)𝑚 )T𝒇 (0)𝑚

−
(𝒑ℎ

𝑙
)T𝒇 (𝑚)𝑚

(𝒇 (𝑚)𝑚 )T𝒇 (𝑚)𝑚

)

+
𝐿ℎ∑︁
𝑙=1

𝜌

2

(
(𝒑ℎ

𝑙
)T𝒇 (𝑚)𝑚

(𝒇 (𝑚)𝑚 )T𝒇 (𝑚)𝑚

+
(𝒑ℎ

𝑙
)T𝒇 (0)𝑚

(𝒇 (0)𝑚 )T𝒇 (0)𝑚

− 2\𝑙𝑚) (
(𝒑ℎ

𝑙
)T𝒇 (𝑚)𝑚

(𝒇 (𝑚)𝑚 )T𝒇 (𝑚)𝑚

−
(𝒑ℎ

𝑙
)T𝒇 (0)𝑚

(𝒇 (0)𝑚 )T𝒇 (0)𝑚

). (26)

Let 𝑭 denote the current indicator matrix, which is stored in memory in advance, and we denote

the index of element 1 in the 𝑖-th row of 𝑭 as 𝑟, 𝑟 ∈ [𝑘]. Let 𝒇 (𝑚)𝑚 represent the𝑚-th column of

𝑭 (𝑚)
𝑖

, 𝒇 (0)𝑚 represent the𝑚-th column of 𝑭 (0)
𝑖

, 𝒇𝑚 represent the𝑚-th column of 𝑭 , then there will

be two situations for (26):

• Situation 1:𝑚 = 𝑟 , which means the 𝑖-th element of 𝒇 (𝑚)𝑚 and 𝒇𝑚 is 1. As a result, it follows

that 𝒇 (𝑚)𝑚 = 𝒇𝑚 . We define 𝜹𝑚 = 𝒇𝑚 − 𝒇
(0)
𝑚 , where the 𝑖-th element of 𝜹𝑚 equals 1 and all other

elements equal 0. Let 𝑝𝑖𝑙 denote the (𝑖, 𝑙)-element of matrix 𝑷ℎ , then it holds that:

𝑿ℎ𝒇𝑚 = 𝑿ℎ (𝒇 (0)𝑚 + 𝜹𝑚) = 𝑿ℎ𝒇
(0)
𝑚 + 𝒙ℎ𝑖 ,

(𝒇 (0)𝑚 )T𝒇 (0)𝑚 = (𝒇𝑚 − 𝜹𝑚)T (𝒇𝑚 − 𝜹𝑚) = 𝒇T

𝑚𝒇𝑚 − 1,

(𝒑ℎ
𝑙
)T𝒇 (0)𝑚 = (𝒑ℎ

𝑙
)T (𝒇𝑚 − 𝜹𝑚) = (𝒑ℎ

𝑙
)T𝒇𝑚 − 𝑝𝑖𝑙 .

Substitute the above equations into (26), we have:

L(𝑚, 𝑖, ℎ) = −
𝒇T

𝑚𝑿
T

ℎ
𝑿ℎ𝒇𝑚

𝒇T

𝑚𝒇𝑚
+
𝒇T

𝑚𝑿
T

ℎ
𝑿ℎ𝒇𝑚 − 2(𝒙ℎ𝑖 )T𝑿ℎ𝒇𝑚 + (𝒙ℎ𝑖 )T𝒙ℎ𝑖

𝒇T

𝑚𝒇𝑚 − 1
+

𝐿ℎ∑︁
𝑙=1

𝑢𝑙𝑚 (
(𝒑ℎ

𝑙
)T𝒇𝑚 − 𝑝𝑖𝑙

𝒇T

𝑚𝒇𝑚 − 1
−
(𝒑ℎ

𝑙
)T𝒇𝑚

𝒇T

𝑚𝒇𝑚
)+

𝐿ℎ∑︁
𝑙=1

𝜌

2

(
(𝒑ℎ

𝑙
)T𝒇𝑚

𝒇T

𝑚𝒇𝑚
+
(𝒑ℎ

𝑙
)T𝒇𝑚 − 𝑝𝑖𝑙

𝒇T

𝑚𝒇𝑚 − 1
−2\𝑙𝑚) (

(𝒑ℎ
𝑙
)T𝒇𝑚

𝒇T

𝑚𝒇𝑚
−
(𝒑ℎ

𝑙
)T𝒇𝑚 − 𝑝𝑖𝑙

𝒇T

𝑚𝒇𝑚 − 1
). (27)

• Situation 2:𝑚 ≠ 𝑟 , which means the 𝑖-th element of 𝒇 (0)𝑚 and 𝒇𝑚 is 0. As a result, it follows

that 𝒇 (0)𝑚 = 𝒇𝑚 . We define 𝜹𝑚 = 𝒇 (𝑚)𝑚 − 𝒇𝑚 , where the 𝑖-th element of 𝜹𝑚 equals 1 and all other

elements equal 0. Let 𝑝𝑖𝑙 denote the (𝑖, 𝑙)-element of matrix 𝑷ℎ , then it holds that:

𝑿ℎ𝒇
(𝑚)
𝑚 = 𝑿ℎ (𝒇𝑚 + 𝜹𝑚) = 𝑿ℎ𝒇𝑚 + 𝒙ℎ𝑖

(𝒇 (𝑚)𝑚 )T𝒇 (𝑚)𝑚 = (𝒇𝑚 + 𝜹𝑚)T (𝒇𝑚 + 𝜹𝑚) = 𝒇T

𝑚𝒇𝑚 + 1

(𝒑ℎ
𝑙
)T𝒇 (𝑚)𝑚 = (𝒑ℎ

𝑙
)T (𝒇𝑚 + 𝜹𝑚) = (𝒑ℎ

𝑙
)T𝒇𝑚 + 𝑝𝑖𝑙 .
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Substitute the above equations into (26), we have:

L(𝑚, 𝑖, ℎ) =
𝒇T

𝑚𝑿
T

ℎ
𝑿ℎ𝒇𝑚

𝒇T

𝑚𝒇𝑚
−
𝒇T

𝑚𝑿
T

ℎ
𝑿ℎ𝒇𝑚 + 2(𝒙ℎ𝑖 )T𝑿ℎ𝒇𝑚 + (𝒙ℎ𝑖 )T𝒙ℎ𝑖

𝒇T

𝑚𝒇𝑚 − 1
+

𝐿ℎ∑︁
𝑙=1

𝑢𝑙𝑚 (
(𝒑ℎ

𝑙
)T𝒇𝑚

𝒇T

𝑚𝒇𝑚
−
(𝒑ℎ

𝑙
)T𝒇𝑚 + 𝑝𝑖𝑙

𝒇T

𝑚𝒇𝑚 − 1
)+

𝐿ℎ∑︁
𝑙=1

𝜌

2

(
(𝒑ℎ

𝑙
)T𝒇𝑚

𝒇T

𝑚𝒇𝑚
+
(𝒑ℎ

𝑙
)T𝒇𝑚 + 𝑝𝑖𝑙

𝒇T

𝑚𝒇𝑚 + 1
−2\𝑙𝑚) (

(𝒑ℎ
𝑙
)T𝒇𝑚 + 𝑝𝑖𝑙

𝒇T

𝑚𝒇𝑚 + 1
−
(𝒑ℎ

𝑙
)T𝒇𝑚

𝒇T

𝑚𝒇𝑚
). (28)

To update the 𝑖-th row of 𝑭 , we aggregate the objective values computed by (27) and (28) from

each client, and incorporate them into our updating formulations:

𝑓𝑖𝑠 =

{
1, 𝑠 = argmin𝑚

∑𝐻
ℎ=1
L(𝑚, 𝑖, ℎ);

0, otherwise.
(29)

Consider the objective function (27) and (28), which contains five terms: 𝒇T

𝑚𝒇𝑚 , 𝒇
T

𝑚𝑿
T

ℎ
𝑿ℎ𝒇𝑚 ,

𝑿ℎ𝒇𝑚 , (𝒑ℎ
𝑙
)T𝒇𝑚 , 𝑝𝑖𝑙 and (𝒙ℎ𝑖 )T𝒙ℎ𝑖 . It is worth noting that the update formulas for𝒇T

𝑚𝒇𝑚 ,𝒇T

𝑚𝑿
T

ℎ
𝑿ℎ𝒇𝑚 ,

and 𝑿ℎ𝒇𝑚 are provided in (19). Since 𝑝𝑖𝑙 and (𝒙ℎ𝑖 )T𝒙ℎ𝑖 are constants and require no updating, we

present the update formula for (𝒑ℎ
𝑙
)T𝒇𝑚 as follows:

(𝒑ℎ
𝑙
)T𝒇 𝑟 ← (𝒑ℎ

𝑙
)T𝒇 𝑟 − 𝑝𝑖𝑙 ; (𝒑ℎ

𝑙
)T𝒇 𝑠 ← (𝒑ℎ

𝑙
)T𝒇 𝑠 + 𝑝𝑖𝑙 . (30)

The computation of 𝑭 , along with other associated terms, has been completed. Moving forward,

we intend to present an approach for solving the variables 𝚯 and 𝑼 .

2) 𝚯 and 𝑼 -solving procedure. When solving the variable 𝚯, the other two variables can be

regarded as constants. Considering the optimization problem formulated in (25), it can be observed

that this problem can be expressed as a quadratic programming (QP) problem with respect to 𝚯. As

a result, the closed solution for 𝚯 can be obtained readily as follows:

\𝑙 𝑗 =



(𝒑ℎ
𝑙
)T𝒇 𝑗

𝒇 T𝑗 𝒇 𝑗

− 𝑢𝑙 𝑗

𝜌
, 𝛽𝑙 ≤

(𝒑ℎ
𝑙
)T𝒇 𝑗

𝒇 T𝑗 𝒇 𝑗

≤ 𝛼𝑙 ,

𝛽𝑙 ,
(𝒑ℎ

𝑙
)T𝒇 𝑗

𝒇 T𝑗 𝒇 𝑗

< 𝛽𝑙 ,

𝛼𝑙 ,
(𝒑ℎ

𝑙
)T𝒇 𝑗

𝒇 T𝑗 𝒇 𝑗

> 𝛼𝑙 ,

𝑙 ∈ [𝐿ℎ], 𝑗 ∈ [𝑘] . (31)

To solve the dual variable 𝑼ℎ , we make use of the inherent properties of the ADMM framework

[13], which enables us to derive an updating formula for 𝑼ℎ :

𝑢𝑙 𝑗 ← 𝑢𝑙 𝑗 + 𝜌 (\𝑙 𝑗 −
(𝒑ℎ

𝑙
)T𝒇 𝑗

𝒇T

𝑗 𝒇 𝑗

), 𝑙 ∈ [𝐿ℎ], 𝑗 ∈ [𝑘] . (32)

Remarks. When a client possesses sensitive attributes, a fairness-constrained subproblem is solved

by using the Lagrangian function (27) and (28). Moreover, if a client does not have sensitive

attributes, an unconstrained subproblem is solved using the degenerated function (17). Both types

of clients contribute their objective values to the VFL process. Furthermore, the distribution of

sensitive features among clients has no impact on the final result, as determined by the separable

nature of the optimization problem (20).
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4.2.3 Guarantee for feasible solutions. Taking into account that the fair 𝑘-means problem does not

necessarily have a feasible solution (due to inappropriate choices of 𝜶 and 𝜷 ), we propose several
methods to improve the feasibility of the solutions and reduce the number of iterations.

• Choice of penalty parameter. The penalty parameter is used in ADMM algorithms to penalize

the violation of constraints and control the strength of the penalty. By manipulating the value of

the penalty parameter, it becomes possible to achieve a balance between the clustering utility

and the level of adherence to fairness constraints. If the penalty parameter is too small, the

algorithm may not pay enough attention to the fair constraints, leading to infeasible solutions.

Conversely, if the penalty parameter is too large, the algorithm may suffer from numerical

instability, preventing the algorithm from converging or outputting infeasible solutions. In

practice, the penalty parameter can be gradually increased during iterations by adopting the

penalty parameter updating scheme, also known as the penalty parameter increasing method [50].

This method can balance the strength of the penalty and the convergence rate of the algorithm,

thereby enhancing the feasibility of obtaining feasible solutions.

• Stop criterion.We have reviewed that a fair 𝑘-means solution has _-additive violation if the RD

andMP constraints are satisfied up to±_-violation in Section 3.3. To express these constraints with
_-additive violation in the form of matrix multiplication, we present the following formulation:

𝛽𝑙𝒇
T

𝑗 𝒇 𝑗 − _ ≤ 𝒑T

𝑙
𝒇 𝑗 ≤ 𝛼𝑙𝒇

T

𝑗 𝒇 𝑗 + _, 𝑗 ∈ [𝑘], 𝑙 ∈ [𝐿ℎ] . (33)

We consider using the inequalities (33) as a stopping criterion for the F3KM iterations. Specifically,

when the inequalities (33) are satisfied during the F3KM iterations, we consider the solution to

be fair and output the corresponding indicator matrix 𝑭 .

4.3 Complexity Analysis
The high cost of communication and computation in federated learning is a major bottleneck that

limits its efficiency. In the following, we present the theoretical communication and computational

complexity of the F3KM algorithm, and elaborate in detail why F3KM is an efficient algorithm in

terms of communication and computation.

Theorem 1. Let 𝑏 denote the number of blocks, and 𝑇 denote the number of iterations, then the
communication complexity of F3KM is given by O(𝑏𝑇 ).

Proof. From Algorithm 4 and Figure 6, we can infer that in each iteration of F3KM, communi-

cation between the server and clients is required 𝑏 times for solving 𝑭 , and one communication is

needed for solving 𝚯𝒉 and 𝑼ℎ . Therefore, the total number of communications required in each

iteration is (𝑏 + 1). Let 𝑇 denote the total number of iterations of F3KM, then the total number of

communications required by F3KM is O(𝑏𝑇 ). □

Proposition 1. Our F3KM is a communication-efficient federated learning algorithm. This is
because in federated learning, the number of communication rounds is often proportional to the size of
the dataset. F3KM reduces communication complexity to a constant by employing the BCD method.
Specifically, during the computation of the indicator matrix 𝑭 , F3KM updates 𝑛𝑏 rows of 𝑭 at a time
instead of a single row. This approach alleviates the communication pressure by leveraging local
computation, which is much faster than communication.

Theorem 2. The computation complexity of F3KM on each client side is O(𝑛(𝑑ℎ + 𝐿ℎ)𝑘𝑇 ).

Proof. Given the dataset 𝑿ℎ and the color matrix 𝑷ℎ , we aim to evaluate the algorithmic

complexity of F3KM on the client side (Algorithm 5) by dividing the computation into four parts.

Firstly, the computation of 𝑿ℎ𝒇𝑚 , 𝒇T

𝑚𝒇𝑚 , and (𝒑ℎ
𝑙
)T𝒇𝑚 (𝑖 ∈ [𝑛],𝑚 ∈ [𝑘]), all of which are stored in
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Table 2. An overview of the datasets

Ref. Dataset 𝒏 𝒅
Sensitive
attributes

# of
groups

[31] Athlete 271,117 15 sex, season 2, 2

[11] Bank 4,521 16 marital, default 3, 2

[11] Census 32,561 15 sex, race 2, 5

[11] Creditcard 30,000 24 marriage, education 4, 7

[11] Diabetes 101,766 50 gender, race 2, 6

[3] Recruitment 4,001 15 gender, ind-degree 2, 3

[7] Spanish 4,747 21 gender 3

[1] Student 32,594 12 gender,disability 2, 2

[11] Census1990 2,458,285 69 iSex, dAge 2, 8

[2] HMDA 5,986,660 53 ethnicity, race 3, 7

memory, requires 𝑛𝑑ℎ𝑘 , 𝑛𝑘 , and 𝑛𝐿ℎ𝑘 additions, respectively. The computation of (𝒙ℎ𝑖 )T𝒇𝑚 requires

𝑛𝑑ℎ multiplications, and the computation of 𝒇T

𝑚𝑿
T

ℎ
𝑿ℎ𝒇𝑚 requires 𝑑ℎ𝑘 multiplications. Secondly, the

computation in step 4 involves 2𝑛𝑘 + 3𝑛𝐿ℎ𝑘 additions, 𝑛(𝑑ℎ + 3𝐿ℎ)𝑘 multiplications and 2𝑛𝐿ℎ𝑘 + 2𝑛𝑘
divisions. Thirdly, steps 7 and 8 require 2𝑛(𝑑ℎ + 𝐿ℎ) additions, and finally, steps 10 and 11 require

2𝐿ℎ𝑘 additions and 𝐿ℎ𝑘 multiplications. Given that the time required for multiplications and

divisions is significantly higher than that for additions, we limit our analysis to the number of

multiplications and divisions. The total number of multiplications and divisions is thus given by

(𝑛𝑑ℎ + 𝑑ℎ𝑘 + 𝑛(𝑑ℎ + 3𝐿ℎ)𝑘 + 2𝑛𝐿ℎ𝑘 + 2𝑛𝑘 + 𝐿ℎ𝑘). Therefore, when the algorithm is executed for 𝑇

iterations, the total algorithmic complexity is O(𝑛(𝑑ℎ + 𝐿ℎ)𝑘𝑇 ). □

Proposition 2. The state-of-the-art method for solving the fair 𝑘-means problem, known as Fair-LP
[11], employs 𝑛𝑘 LP variables. However, due to the high complexity of LP [16], this method becomes
computationally impractical for large input data sizes. In contrast, our proposed method, F3KM, reduces
the complexity to linear in the input data size, enabling efficient and fast solutions to the fair 𝑘-means
problem. As a result, our method has the potential to advance the field of fair clustering and promote
the development of more scalable and practical algorithms.

5 EXPERIMENTS

Goals. In the forthcoming experiments, we intend to validate the effectiveness and efficiency of

F3KM. With respect to effectiveness, our primary focus is to weigh the trade-off between utility

and fairness. Regarding the algorithm’s efficiency, we take into account the communication rounds

and the computation time.

5.1 Settings

Datasets. To evaluate the performance of F3KM, we employ a diverse range of ten real-world

datasets, namely Athlete, Bank, Census, Creditcard, Diabetes, Recruitment, Spanish, Student,
Census1990, and HMDA. Of these, Census1990 and HMDA represent datasets of a million-scale

magnitude, utilized specifically to scrutinize the computational efficiency of F3KM. For each dataset,

we subsample several features and select at least one sensitive feature, such as race and sex. A

comprehensive overview of the datasets can be obtained from Table 2.
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Baselines. We experimentally evaluate the performance of F3KM against three methods, namely,

Fair-LP [11], CDKM [41], and Lloyd’s heuristic [38]. As explained in our related works, Fair-LP is

the state-of-the-art method for 𝑘-means with fair constraints. CDKM and Lloyd’s heuristic are two
methods that perform 𝑘-means clustering without fair constraints: CDKM is a clustering method

which can usually converge to a better local minimum than Lloyd’s heuristic.
Measurements.We employ several metrics to evaluate the trade-off between utility and fairness in

our study. The first metric is the sum of squared error (SSE), which has been previously introduced

in Section 3.1. We also introduce a notion called relative error , denoted as
𝑆𝑆𝐸 (𝑆 ′ )
𝑆𝑆𝐸 (𝑆 ) , to assess the

clustering utility. Here, 𝑆 ′ represents the results obtained from either F3KM, Fair-LP, or CDKM,

while 𝑆 represents the results obtained from Lloyd’s heuristic. For fairness evaluation, we adopt

the balance proposed by Chierichetti et al. [15]. Specifically, let [𝑙 :=
𝒑T

𝑙
𝒑𝑙
𝑛

denote the proportion of

points in group 𝑙 over the entire dataset, and let [𝑙 ( 𝑗) :=
𝒑T

𝑙
𝒇 𝑗

𝒇 T𝑗 𝒇 𝑗

denote the proportion of points in

group 𝑙 over the points in cluster 𝑗 . Then, we define 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ( 𝑗) as min{ [𝑙
[𝑙 ( 𝑗 ) ,

[𝑙 ( 𝑗 )
[𝑙
}, where 𝑙 ∈ [𝐿]

and 𝑗 ∈ [𝑘]. We parameterize 𝜶 and 𝜷 as follows: 𝛼𝑙 =
[𝑙
1−𝛿 and 𝛽𝑙 = [𝑙 (1 − 𝛿), where 𝛿 is a

hyperparameter that adjusts the gap between 𝜶 and 𝜷 . For the evaluation of efficiency, we employ

both the communication rounds and the running time as metrics.

Implementations. Our algorithms were executed on a computational platform comprising an

Intel i7-8750H CPU with 6 cores, 32 GB of RAM, and operating on the Windows 10 environment.

The software implementation was realized in Matlab 2020b and open-sourced
2
. In addition, we

provide an implementation of F3KM in Scala 2.12 and Spark 3.0, utilizing the MapReduce paradigm.

5.2 Effectiveness Analysis
In this section, our main focus is on examining the trade-off between utility and fairness. To this

end, we undertake three distinct sets of experiments, specifically: (i) exploring the 𝑆𝑆𝐸 as a function

of varying 𝑘 ; (ii) investigating the variation of relative error as a function of varying 𝛿 ; and (iii)

analyzing the balance of the four methods within each cluster, given fixed 𝑘 and 𝛿 . Ultimately, we

present a summary of our experimental findings.

5.2.1 𝑆𝑆𝐸 vs. number of clusters. Due to the considerable computational overhead of executing

Fair-LP, we opt to downsample each dataset to 1000 data points to conform with the computational

constraints of Fair-LP [11]. The hyperparameter 𝛿 is set to 0.5, the values of 𝑛𝑏 are set to 200, 500,

and 1000, and after subjecting each method to 50 repetitions, we obtain the mean 𝑆𝑆𝐸, enabling the

visualization of the 𝑆𝑆𝐸 versus the number of clusters in Figure 7.

Observations. From Figure 7, we can observe that the 𝑆𝑆𝐸 of all methods decreases as the number

of clusters increases. Furthermore, CDKM exhibits a consistently lower 𝑆𝑆𝐸 compared to Lloyd’s
heuristic, providing empirical evidence that CDKM can indeed converge to a superior local mini-

mum. This finding aligns with the conclusion drawn in [41]. In addition, F3KM typically achieves

a lower 𝑆𝑆𝐸 than Fair-LP on eight datasets, suggesting that F3KM, an in-processing method, out-

performs Fair-LP, a post-processing method, in terms of the trade-off between utility and fairness.

Moreover, in certain scenarios, F3KM attains an even lower 𝑆𝑆𝐸 than Lloyd’s heuristic, indicating
that F3KM inherits the advantage of CDKM in terms of converging to a better local minimum.

Additionally, when selecting a smaller value for 𝑛𝑏 in F3KM, a smaller 𝑆𝑆𝐸 can be achieved. This is

attributed to the fact that a smaller 𝑛𝑏 allows for more parameters updates within a single iteration.

2
https://github.com/zsk66/F3KM-MATLAB
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Fig. 9. Evaluation of multiple methods in terms of their balance, where the numbers below the x-axis are
relative errors.
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5.2.2 Relative error vs. 𝛿 . We examine the impact of fairness constraints on the utility of clustering

by exploring the changes in relative error resulting from adjusting the gap between 𝜶 and 𝜷 in

the fairness constraints. Our experiments utilize the entire samples in the datasets and, to reduce

time consumption, each algorithm is run 10 times, with the average relative error being computed.

Figure 8 presents four distinct values of 𝛿 (0.2, 0.4, 0.6, and 0.8), and we observe the changes in

relative error of F3KM and Fair-LP at different values of 𝑘 and 𝑛𝑏 as 𝛿 varies.

Observations. Based on the observations from Figure 8, it is evident that an increase in 𝛿 leads to

a decrease in the relative error of both F3KM and Fair-LP at various 𝑘 values. This can be attributed

to the widening gap between 𝜶 and 𝜷 with increasing 𝛿 , which facilitates the fulfillment of fairness

constraints and yields feasible solutions with smaller 𝑆𝑆𝐸 for the fair 𝑘-means problem. Additionally,

a decrease in 𝑘 results in a reduction in the relative error due to the associated decrease in the

number of fairness constraints, thereby leading to the attainment of feasible solutions with smaller

𝑆𝑆𝐸 for the fair 𝑘-means problem. Furthermore, the relative error of F3KM with 𝑛𝑏 = 500 is often

lower than that of Fair-LP at the same 𝑘 value, thus confirming the superior trade-off between

utility and fairness offered by F3KM compared to Fair-LP. However, it should be noted that when

𝑛𝑏 = 5000, in certain datasets such as Recruitment, the relative error of F3KM exceeds that of

Fair-LP.

5.2.3 Balance vs. four methods. In the following analysis, we aim to investigate the balance metric

and its corresponding relative error with respect to distinct methods. To ensure a consistent

evaluation, we set the value of 𝛿 to 0.2, following the widely accepted interpretation of the 80%

rule in the DI doctrine [11]. Specifically, we apply this assessment on eight datasets, where the

parameter 𝑘 is fixed at 4. The outcomes of this examination are presented in Figure 9, illustrating

the balance values and relative error for each method across the four clusters. The abbreviations

F3KM-0.5K and F3KM-5K correspond to F3KM with 𝑛𝑏 =500 and 5000, respectively.

Observations. In Figure 9, we present the balance values of several clustering methods for each

cluster. Notably, the CDKM and Lloyd’s heuristic, which lack fairness constraints, exhibit the lowest
balance values and frequently fail to satisfy the threshold of 0.8. Conversely, the balance values of

F3KM and Fair-LP are demonstrably higher than those of the unconstrained methods. Nevertheless,

our findings indicate that Fair-LP often falls short of achieving a balance value of 0.8 in some

clusters, leading to additive violation with a maximum value of 3, as evidenced in the Creditcard
dataset. In contrast, F3KM achieves a balance value of 0.8 in most clusters of the datasets, with an

additive violation of 2 solely in the fourth cluster of the Creditcard dataset, which is smaller than

that of Fair-LP. Additionally, our observations reveal that F3KM-0.5K has a lower relative error and

a larger balance value than Fair-LP. However, it is noteworthy that the relative error of F3KM-5K
may occasionally exceed that of Fair-LP. Hence, selecting an appropriate 𝑛𝑏 in F3KM can better

ensure the trade-off between utility and fairness.

5.2.4 Summary of Lessons Learned. We have presented an analysis of the changes in 𝑆𝑆𝐸 with

respect to 𝑘 , the variations of relative error as a function of 𝛿 , and a comparison of balance among

different methods for given values of 𝑘 and 𝛿 . Our experimental results have led us to draw the

following conclusions:

• Selecting an appropriate 𝑛𝑏 in F3KM can better ensure the desired trade-off between utility and

fairness compared to state-of-the-art methods. This can be attributed to the decrease in the

number of parameter updates per iteration as 𝑛𝑏 increases.

• Modifying the value of 𝑘 and 𝛿 in fair 𝑘-means clustering can impact its utility. Specifically, an

increase in 𝑘 and a decrease in 𝛿 result in a reduction in the clustering utility, attributed to the

imposition of additional and more stringent fairness constraints.
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Table 3. The communication rounds and corresponding relative error at varying 𝑛𝑏 .

Dataset Communication rounds Relative error

1 200 500 1000 5000 10000 1 200 500 1000 5000 10000

Athlete 13.56M 67.80K 27.15K 13.60K 2.75K 1.40K 1.005 1.005 1.005 1.006 1.006 1.006

Bank 0.23M 1.15K 0.50K 0.25K 0.05K 0.05K 1.064 1.069 1.070 1.071 1.073 1.073

Census 1.63M 8.15K 3.30K 1.65K 0.35K 0.20K 1.004 1.008 1.009 1.027 1.055 1.057

Creditcard 1.50M 7.50K 30.00K 1.50K 0.30K 0.15K 1.003 1.003 1.003 1.004 1.005 1.008

Diabetes 5.09M 25.45K 10.20K 5.10K 1.05K 0.55K 1.005 1.006 1.006 1.006 1.007 1.007

Recruitment 0.20M 1.00K 0.40K 0.20K 0.05K 0.05K 1.031 1.031 1.037 1.061 1.107 1.107

Spanish 0.24M 1.20K 0.50K 0.25K 0.05K 0.05K 1.020 1.022 1.031 1.036 1.080 1.080

Student 1.63M 8.15K 3.30K 1.65K 0.35K 0.20K 0.984 0.989 0.991 0.993 0.995 0.996

• When the fairness constraints become excessively stringent, the fair 𝑘-means problem may lack

feasible solutions, resulting in an additive violation. Our experimental results have substantiated

that the additive violation of F3KM is smaller than the current state-of-the-art methods.

5.3 Efficiency Analysis
5.3.1 Number of communications vs. 𝑛𝑏 . Table 2 shows the variations in communication rounds

and relative error of F3KM as a function of 𝑛𝑏 . We have chosen a maximum of 50 iterations for

F3KM, with 𝑘 assigned a value of 4, 𝛿 set to 0.2, and 𝑛𝑏 is assigned values of 1, 0.2K, 0.5K, 1K, 5K,

and 10K. In the event that the value of 𝑛𝑏 exceeds the dimension of the dataset, 𝑛𝑏 is set equal to

the dataset size.

Observations. Based on the findings in Table 3, it is evident that increasing the value of 𝑛𝑏
leads to a significant reduction in the number of communications. Specifically, the BCD method

demonstrates a substantial reduction in the number of communications, with the reduction reaching

nearly 10K times when 𝑛𝑏 = 10K as compared to the coordinate descent method (𝑛𝑏 = 1). However,

increasing 𝑛𝑏 can also adversely affect the clustering utility as demonstrated by the observed

deterioration in relative error. Specifically, in the Recruitment dataset, the maximum relative error

increased by approximately 10.7% when 𝑛𝑏 = 10K as compared to 𝑛𝑏 = 1, while the Athlete dataset
showed a minimal increase of 0.6%. The primary cause of the high relative error in the Recruitment
dataset is that 𝑛𝑏 > 𝑛, leading to difficulties in variable 𝑭 converging to a local minimum during the

computing and update process. Based on our extensive experience, we recommend that 𝑛𝑏 = 1

4
𝑛

be selected to achieve a significant reduction in communication rounds while simultaneously

maintaining a low relative error.

5.3.2 Running time vs. sampling size. Next, we compare the running time of F3KM and Fair-LP.
We set the value of 𝑘 to 3, the value of 𝛿 to 0.5, and the value of 𝑛𝑏 to 1/4 of the sampling size. Table

4 provides information on how the running time of both algorithms vary with the sampling size.

Observations. Table 4 illustrates the relationship between running time and sampling size for

F3KM and Fair-LP on two large-scale datasets, namely Census1990 and HMDA. It is evident that
both methods demonstrate an increase in running time as sampling size increases. Notably, when

the sampling size is relatively small, such as 50K and 0.1M on the HMDA dataset, Fair-LP exhibits

lower running time compared to F3KM. Conversely, as the sampling size increases, F3KM converges

faster than Fair-LP. This is determined by the complexity of the two algorithms. Fair-LP can

only accomplish computations within the allotted time (i.e., 1 hour) when the sampling size is
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Table 4. Comparison between F3KM and Fair-LP in terms of running time (seconds). We abbreviate TLE as
the time limit exceeded for 1 hour, and SLE, as the sampling size limit exceeded for the dataset dimension.

Dataset Method 50K 0.1M 0.2M 0.5M 1M 2M 5M

Census1990
F3KM 30.4 56.9 124.1 422.6 1045.3 1966.7 SLE

Fair-LP 35.7 93.5 261.8 1722.6 TLE TLE SLE

HMDA
F3KM 30.6 48.8 102.5 328.1 775.6 1304.8 3459.4

Fair-LP 14.7 27.8 161.4 1201.8 TLE TLE TLE

approximately 0.5M, while F3KM can still converge within the same time when the sampling size is

5M. Consequently, F3KM is more computationally efficient than Fair-LP in the context of big data.

5.3.3 Summary of Lessons Learned. We have ascertained the efficiency of F3KM via an extensive

investigation of both communication and computation complexity. Our experimental findings have

led to the following definitive conclusions:

• Our results demonstrate that selecting an appropriate value of 𝑛𝑏 can lead to a substantial

reduction in the communication rounds of F3KMwhen using BCD, as compared to CD. Moreover,

this reduction in communication is attained with minimal compromise on utility, as evidenced

by the low level of the relative error.

• In terms of computation efficiency, F3KM outperforms the state-of-the-art method by enabling

fair 𝑘-means clustering on datasets with a magnitude of 5M within a time span of 1 hour, whereas

Fair-LP is limited to handling datasets with a magnitude of 0.5M within the same time.

6 CONCLUSIONS AND FUTUREWORK
This paper investigated the issue of fair 𝑘-means in situations where data cannot be shared among

multiple parties. To address this issue, we introduced F3KM, an algorithm designed to effectively

solve the fair 𝑘-means problem within the VFL framework. We decomposed the fair 𝑘-means

problem into multiple subproblems and distributed them among the clients. We proposed using

the ADMM to solve each subproblem. Notably, during the solution process, the server and clients

exchanged only the computed results, without sharing the raw data. Our theoretical analysis shows

that F3KM achieves a linear speedup in communication complexity, and reduces the computation

complexity to linear with respect to the dataset size. Our experiments verified F3KM outperformed

other baseline methods in terms of the trade-off between clustering utility and fairness/efficiency.

In future, we plan to further enhance the applicability and versatility of F3KM, and explore the

integration of diverse types of data into our algorithm. For instance, we consider extending F3KM
to encompass additional clustering objective functions, such as 𝑘-median. Furthermore, we will

investigate the incorporation of streaming data, addressing the inclusion of sensitive groups defined

by attribute patterns, as well as handling data stored in various formats, such as graph data.
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