
On Simplifying Large-Scale Spatial Vectors: Fast,
Memory-Efficient, and Cost-Predictable k-means

Yushuai Ji†, Zepeng Liu†, Sheng Wang†∗, Yuan Sun§, and Zhiyong Peng†‡
†School of Computer Science, Wuhan University

‡Big Data Institute, Wuhan University
§La Trobe Business School, La Trobe University

[yushuai, liuzp 063, swangcs, peng]@whu.edu.cn, yuan.sun@latrobe.edu.au

Abstract—The k-means algorithm can simplify large-scale
spatial vectors, such as 2D geo-locations and 3D point clouds, to
support fast analytics and learning. However, when processing
large-scale datasets, existing k-means algorithms have been
developed to achieve high performance with significant compu-
tational resources, such as memory and CPU usage time. These
algorithms, though effective, are not well-suited for resource-
constrained devices. In this paper, we propose a fast, memory-
efficient, and cost-predictable k-means called Dask-means.
We first accelerate k-means by designing a memory-efficient
accelerator, which utilizes an optimized nearest neighbor search
over a memory-tunable index to assign spatial vectors to clusters
in batches. We then design a lightweight cost estimator to predict
the memory cost and runtime of the k-means task, allowing
it to request appropriate memory from devices or adjust the
accelerator’s required space to meet memory constraints, and
ensure sufficient CPU time for running k-means. Experiments
show that when simplifying datasets with scale such as 106,
Dask-means uses less than 30MB of memory, achieves over 168
times speedup compared to the widely-used Lloyd’s algorithm.
We also validate Dask-means on mobile devices, where it
demonstrates significant speedup and low memory cost compared
to other state-of-the-art (SOTA) k-means algorithms. Our cost
estimator estimates the memory cost with a difference of less than
3% from the actual ones and predicts runtime with an MSE up
to 33.3% lower than SOTA methods.

I. INTRODUCTION

Sensors, such as GPS and lidar, are commonly found in
resource-constrained devices like autonomous vehicles (AVs)
[60] and drones [25], [53]. They generate a wealth of spatial
vectors [28], which are geometric representations of spatial
objects, for example, 2D trajectory datasets and 3D point cloud
datasets collected from GPS and lidar deployed in AVs [15].

These spatial vectors can be widely applied on resource-
constrained devices in visualization and learning tasks such as
classification [36] and segmentation [30], [49]. For technolo-
gies such as 3D object recognition [40], processing all cloud
points is unnecessary since a dense point cloud contains many
redundant spatial vectors, and processing all spatial vectors
significantly increases storage and processing costs.

The most straightforward way to tackle this limitation is
by simplifying a dataset, and the two most widely used
simplifying methods are random selection [30] and clustering
algorithms (e.g., k-means [39]). However, randomly select-
ing a subset of spatial vectors from the dataset may not be

∗Sheng Wang is the corresponding author.

Fig. 1. The simplified point clouds by random sampling (left) and our
k-means clustering algorithm (right).

evenly distributed and, therefore, cannot accurately represent
the dataset [51]. This makes k-means a better choice and
widely used to simplify point clouds [41], [55], [65], [66] and
summarize datasets [9], [14], [34]. For example, as shown in
Fig. 1, the spatial vectors selected by our k-means algorithm
are more evenly distributed than the randomly selected ones.

However, as the scales of datasets expand significantly
and reach millions, technologies such as object detection in
AVs [40] still require the k-means algorithm to be highly
efficient. Existing k-means algorithms have been developed
to achieve efficiency using significant computational resources,
such as memory. These algorithms, though effective, are not
well-suited for resource-constrained devices. For example,
Google Coral [4] and Raspberry Pi [12] typically have 4GB of
memory. This raises a critical research question: how to design
a fast and memory-efficient k-means algorithm to simplify
large-scale spatial vectors on resource-constrained devices?

To answer the question, we need to tackle two key chal-
lenges: 1) high space cost for storing bounds and indexes to
reduce unnecessary distance computations for accelerating k-
means tasks, and 2) degradation of the efficiency of k-means
algorithms due to limited memory resources for storing infor-
mation, such as indexes, and insufficient CPU resources for
running it. Various techniques have been proposed to address
these challenges, but they still have shortcomings when applied
to resource-constrained devices, as summarized below.

Sacrificing Substantial Space for Accelerating. Existing
k-means algorithms have high time or space complexity,
making them inapplicable to simplify large-scale datasets
on resource-constrained devices. Memory-efficient k-means
algorithms such as Lloyd’s algorithm [39], Index [44],
Hamerly [26], and NoBound [64], are computationally slow,

ar
X

iv
:2

41
2.

02
24

4v
1

 [
cs

.L
G

]
 3

 D
ec

 2
02

4

especially for clustering tasks that involve both a large number
of spatial vectors and clusters. Although there are algorithms
that trade off memory for speed (e.g., [21], [46], [52]), they
require more memory than is available on these devices.

Inaccruate Memory & Runtime Estimation. For memory
cost estimation, existing methods are either designed for
programs like Java-like projects [10], which cannot be directly
applied to k-means, or are tailored for a few machine
learning (ML) models [7], [13], [23], such as neural networks.
For runtime estimation, most methods [18], [20], [57] involve
training an ML model to predict runtime based on features
provided by k-means. However, existing methods often lead
to high training overhead because the models require a large
number of samples to be generated for model training, which
also requires substantial computational time.

In this paper, we propose Dask-means, a fast, memory-
efficient, and cost-predictable dataset simplification k-means
algorithm for large-scale spatial vectors. To accelerate Lloyd’s
algorithm without costing substantial memory, we build in-
dexes on spatial vectors and cluster centroids. The index
supports optimized k Nearest Neighbor (kNN1) search to
assign spatial vectors to a cluster efficiently. To predict the
memory cost and runtime of Dask-means accurately, we
propose a lightweight cost estimator, which can analyze the
space cost of the pruning mechanism, and estimate the overall
runtime by predicting the iteration number and runtime of each
iteration separately. Overall, our main contributions are:
• We design pruning mechanisms that apply a three-pronged

optimized kNN search on the centroid index to batch prune
spatial vectors to accelerate k-means tasks (see Section IV).

• We predict the memory cost of k-means tasks by building
a mapping function between the dataset and the index,
and estimate runtime by separately predicting the iteration
number and the runtime of each iteration (see Section V).

• Experiments on the tested datasets show that Dask-means
accelerates Lloyd’s algorithm by up to 168 times. Our cost
estimator predicts memory cost with a difference of less
than 3% from the actual values and estimates runtime with
an MSE 33.3% lower than SOTA models (see Section VI).

II. BACKGROUND AND PRELIMINARIES

A. Notations

We use different text formatting styles to represent math-
ematical concepts: plain letters for scalars, bold letters for
vectors, capitalized letters for objects, and bold capitalized
letters for a set containing vectors. For example, x stands for
a scalar, p represents a spatial vector, N denotes an index
node, and D represents a dataset. Without loss of generality,
we denote the d-dimensional Euclidean space as Rd, the set of
positive real numbers as R+, and the set of positive integers
as Z+. Moreover, we use || · || as the Euclidean norm. The
notation details are presented in Table I.

1We use k to differentiate from k in k-means as they represent different
concepts.

TABLE I
SUMMARY OF NOTATIONS.

Notation Description

n ∈ Z+ The dataset size
p = (x1, x2, ..., xd) ∈ Rd The spatial vector
D = {pi}ni=1 ∈ Rn×d The dataset

k ∈ Z+ The number of clusters
S = {S1, S2, · · · , Sk} k exclusive subsets

cj ∈ Rd The mean of the spatial vectors in Sj

N The spatial vector index node (ball node)
p∗ p∗ is the pivot of a node N
r The radius of N

NC The centroids index node
m ∈ R The available memory
f ∈ Z+ The leaf node capacity
t ∈ R+ The runtime of k-means
q ∈ Z+ The maximum number of iterations

B. Definition of k-means

The k-means is a bivariate optimization problem. Given a
dataset D = {p1,p2, · · · ,pn} ∈ Rn×d, k-means aims to
partition D into k exclusive subsets S = {S1, S2, · · · , Sk}
to minimize the Sum of Squared Error:

argmin
S

k∑
j=1

∑
p∈Sj

∥p− cj∥2, (1)

where the centroid cj = 1
|Sj |

∑
p∈Sj

p is the mean of spatial
vectors in cluster Sj . Lloyd’s algorithm [39] is one of the most
widely used methods to solve the k-means problem by assign-
ing each spatial vector to its nearest centroid and iteratively
refining the centroids. The algorithm requires computing n×k
distances in the assignment phase of each iteration, which is
computationally prohibitive for applying it to datasets where
both n and k are large.

C. Accelerated Lloyd’s Algorithms for k-means

We focus on techniques such as hardware-based algorithms,
index-based algorithms, and sequential algorithms to speed up
k-means, as they yield the same results as Lloyd’s algorithm.

Hardware-based Algorithm. Several researchers [35], [38]
design parallel k-means algorithm for GPUs. For instance,
Li et al. [38] develop a parallel k-means using a general-
purpose parallel programming model. Although the methods
are applicable to edge devices, they require significant com-
putational resources, making them unsuitable for resource-
constrained devices. Others focus on accelerating k-means
on specific processors, such as CPU-FPGA [8], FPGA [59],
and heterogeneous many-core supercomputers [67]. Addition-
ally, Bender et al. [11] use two-level memory systems to speed
up k-means. However, they lack generality, as many edge
devices do not have this type of processor or storage system.

Index-based Algorithm. Instead of assigning spatial vectors
one by one, Moore et al. [44] proposed an index that stores
spatial vectors in a hierarchical tree structure called Ball-
tree [47]. The spatial vector index can avoid the distance
computation between a centroid and a set of spatial vectors.

(a) Index-based pruning

�
�∗

�
�∗

��(�)

��

�2

�1

��

(b) Inter bound of assigned centroid

� �

Fig. 2. Pruning using ball node and inter bound.

For example, given two centroids c1 and c2, all the spatial
vectors in a ball node N are closer to centroid c1 than c2 if

∥p∗ − c1∥+ r < ∥p∗ − c2∥ − r, (2)

where p∗ is the pivot of a node N that bounds all spatial
vectors within a radius r, as shown in Fig. 2(a). The index
structure requires extra memory cost, which is proportional to
the number of nodes in the Ball-tree. The drawback of the
index-based algorithm is that it scans all cetroids one by one,
which needs k distance computations, to assign the spatial
vectors in an index node to their nearest centroid in batch.

Sequential Algorithms. As shown in Fig. 2(b), to check
whether a spatial vector pi belongs to a cluster with centroid
cj , Elkan et al. [21] store the lower bound on the distance
from pi to cj , which needs O(nk) memory for all pairs
of spatial vectors and centroids. Firstly, an inter bound is
derived as ∥ca(i) − cj∥, where a(i) denotes the id of the
centroid that pi was assigned in the previous iteration.2 If
∥pi − ca(i)∥ < ∥ca(i) − cj∥/2, then cj can be pruned. As
storing all bounds to every centroid uses much space, Hamerly
et al. [26] proposed to choose the minimum one as the only
centroid inter bound:

cb[a(i)] = min
cj∈C&j ̸=a(i)

∥ca(i) − cj∥. (3)

Elkan et al. [21] stored the computed distances to accelerate
the next iteration, and computes the moving distance of each
centroid ∆[j] = ∥cj − c

′

j∥, also called drift, to estimate the
lower bound using triangle inequality: ∥pi − cj∥ ≥ ∥pi −
c

′

j∥ − ∥cj − c
′

j∥, where c
′

j denotes the position of centroid j
in the previous iteration. Drake [19], Hamerly and Drake [27],
Newling and Fleuret [45], Ryšavý and Hamerly [52] proposed
even tighter bounds, but they all require substantial memory
and become prohibitively costly when k is large. Furthermore,
since the bounds must be updated across iterations, this
overhead slows down the clustering process, making these
algorithms unsuitable for simplifying large-scale point clouds.

Several memory-efficient sequential algorithms were pro-
posed, including [26] described above; [19] that stores k

4
minimum lower bounds; Yinyang [17] that divides k centroids
into k

10 groups and each group has one lower bound; and Dual-
tree [50] that extends the single upper and lower bound of
[26] to index-based algorithm [44], and use index to group
centroids [17] for pruning centroids in batch. In contrast to
[26], Dual-tree [50] needs extra memory for a spatial vector

2To facilitate our illustration, each cluster is simply represented by its
centroid if no ambiguity is caused.

TABLE II
COMPARISON WITH MEMORY-EFFICIENT SEQUENTIAL ALGORITHMS.

Algorithm
Prune Update- Assign Memory- Run-

Centroids free Points cost time
In-batch Bounds In-batch Tunable Predictable

Hamerly [26] ✓ × × × ×
Drake [19] ✓ × × ✓ ×
Yinyang [17] ✓ × × ✓ ×
Dual-tree [50] ✓ × ✓ × ×
NoBound [64] × ✓ × × ×

Dask-means ✓ ✓ ✓ ✓ ✓

index, where each spatial vector and node maintains two
bounds and other pruning information.

Moreover, Xia et al [64] accelerate k-means with no bound
(short as NoBound), but it needs to create a centroid distance
matrix (k · k) in each iteration for pruning centroids outside
a radius range. For an overview of all existing accelerating
algorithms, we suggest readers refer to Section 4.2 of our
recent evaluation paper [61]. As shown in Table II, we
compare existing memory-efficient algorithms from five new
perspectives.

D. Cost Estimator

Memory Cost Estimation. Several technologies [10], [29],
[58] have been proposed to predict the memory cost for
programs such as Java-like programs [10], and can be applied
in k-means. For example, Verbauwhede et al. [58] estimate
the memory cost of digital signal processing programs by
modeling array dependencies and execution sequences as an
integer linear programming (ILP) problem, which is then
solved using an ILP solver. Albert et al. [10] introduce a
parametric technology to infer the memory cost of Java-like
programs by analyzing object lifetimes. Heo et al. [29] propose
a resource-aware, flow-sensitive analysis towards estimating
memory cost using online abstraction coarsening. However,
they can only predict the memory cost for k-means written
in specific programming languages.

TensorFlow [7] and several ML model performance analysis
works [13] estimate memory cost by summarizing the param-
eters, dataset, and outputs. However, they are just a subset of
the whole memory cost. Moreover, TensorFlow cannot analyze
the memory costs related to indexes and bounds, which can
affect the final memory cost. Additionally, Gao et al. [23]
propose DNNMem, which calculates the memory cost of the
computation graph and the deep learning (DL) model runtime.
However, it only works for DL models.

Runtime Estimation. A bunch of models have been proposed
for estimating runtime, but they are time-consuming. Models
like Bayes DistNet [57], XGBoost [24], and AutoML [43]
require an impractical number of training samples before
they can positively impact prediction time. Generating tens
of thousands of k-means samples for training could take
several hours or even days for a resource-constrained device.
Eggensperger et al. [20] propose DisNet to predict the runtime
accurately by a neural network. However, these ML models

repeatedly perform forward propagation, loss calculation, and
backpropagation over multiple epochs until the neural network
reaches satisfactory performance, which is time-consuming.

Alternative methods [22], [31], [37], [43] for predicting k-
means runtime use linear regression, which is time efficient.
For example, Leyton-Brown et al. [37] use ridge regression to
predict runtime. Fan et al. [22] predict runtime using linear
regression by data censoring. Hutter [31] and Mohr [43]
compare various regression models in terms of training time,
prediction time, and prediction error. However, their analysis
applies to general ML models and shows low accuracy when
predicting for the k-means tasks (see Section VI).

Moreover, several models [22], [56] use the posterior in-
formation during task execution to adjust the predicted run-
time. For example, Fan et al. [22] propose TRIP to reduce
underestimation rates of prediction by incorporating elastic
net regularization (two penalties) into the linear regression
model. Similarly, Tang et al. [56] improve runtime accuracy by
multiplying a user-supplied runtime estimate with an adjusting
parameter. However, adding penalties or an adjusting param-
eter requires extensive experimentation to find the optimal
values, which is not practical when the dataset or setting
parameters in ML models change.

III. FRAMEWORK OF DASK-MEANS

In this section, we introduce Dask-means, which can
accelerate k-means significantly, especially on resource-
constrained devices. As shown in Fig. 3, Dask-means con-
sists of two modules described below.

Memory-efficient Accelerator. Recall that the index-based
algorithm [44] requires a time-intensive scan of all cluster
centroids when assigning spatial vectors to clusters. Sequential
algorithms [19], [21], in contrast, require substantial memory
to maintain bounds for spatial vectors and nodes across
iterations for centroid pruning. To avoid these limitations, as
shown in Fig. 3(a), we construct an index on spatial vectors,
denoted as spatial vector index. This index leverages nodes
to represent a group of spatial vectors, thus avoiding distance
computations between a centroid and a batch of spatial vectors.
Then, we design an optimized kNN search over the index
built on centroids (namely the centroid index) and maintain
the proposed inter bound to prune unnecessary computations.

Lightweight Cost Estimator. As shown in Fig. 3(b), we
propose a lightweight cost estimator to predict the memory
cost and the runtime for k-means. We first propose a memory
estimate method to predict memory cost by building a mapping
function between the dataset and the index. This method
also allows us to adjust the hyperparameters of the proposed
accelerator to build a memory-tunable index that accelerates
the k-means task. We estimate the runtime by separately
predicting the iteration number and each iteration’s runtime.
Notably, we then extract posterior information from the last
iteration of the k-means task to adjust the predicted runtime.

Assign Spatial Vectors in Batch

kNN

Centroid Index

Spatial Vector Index

If Converged

Output: k spatial vector clusters

Input: A k-means (Dataset and k) task over a limited resources device

Limited Memory RAM

Parameter Tuning

The Number of Iterations
Runtime of Each Iteration

k=1

Inter Bound
Pruning

k=2

k=2

Node
Assignment

Spatial Vector
Assignment

(a) Memory-efficient Accelerator (b) Lightweight Cost Estimator

1

2

Refinement
Assignment Iteration

Runtime

Memory Prediction

Runtime Prediction
monitor

Mapping Function

Fig. 3. Framework of Dask-means.
IV. MEMORY-EFFICIENT ACCELERATOR

A. Pruning Mechanisms
We design pruning mechanisms that apply a three-pronged

optimized kNN over the centroid index to batch prune nodes
and spatial vectors, thus accelerating k-means without the need
to store bounds for spatial vectors. We first prune distance
computations between centroids and a set of spatial vectors by
applying kNN to find the nearest centroids of an index node (or
a spatial vector), with the kNN bounds inherited from parent
nodes. We then use kNN to search for the nearest centroids of
the target one to avoid scanning all centroids. Notably, we add
two drifts in estimating the inter bound to accelerate kNN.

Indexes on Spatial Vectors and Centroids. We build a
Ball-tree index structure for spatial vectors with the root node
denoted as R, and another Ball-tree index structure for the
clusters’ centroids with the root node denoted as RC . In Fig. 4,
we show a toy example where an index node of spatial vectors
(the big red circle on the left) covers its two child nodes (the
small red dotted circles); the black circle on the right denotes
a centroid node which covers six centroids. Note that the Ball-
tree for spatial vectors needs to be built only once, while the
Ball-tree for centroids must be constructed in each iteration of
the algorithm as the centroids move.

The nodes (denoted as N and NC) in the spatial vector
and centroid indexes are slightly different; both of them need
to store the pivot vector p∗ (the mean of all covered spatial
vectors/centroids in the node) and radius r to bound child
nodes (or spatial vectors if it is a leaf node with capacity
f). But each node N of the spatial vector index also stores
the number of spatial vectors it covers, denoted as |N |, e.g.,
|N | = 8 in Fig. 4.

Furthermore, each index node N (or spatial vector pi) stores
an integer a(N) (or a(i)) to denote the id of the cluster it was
assigned to in the previous iteration. For the current iteration,
we can compute the distance between a spatial vector pi and
the centroid of its previous cluster ca(i). If the distance is
smaller than the inter bound, i.e.,

∥pi − ca(i)∥ <
cb[a(i)]

2
, (4)

where cb[a(i)] is defined in Eq. (3), pi still belongs to the
cluster a(i) in the current iteration [21].

�2

�1

��1

��2

||�.�∗
′ − ��.�∗||

��
�

�
�∗

Child node �′ of �
�′

��.�∗

Fig. 4. Pruning with a single indexing tree, where a spatial vector node
N contains two child nodes; pruning with centroid index node NC , where
cn1 and cn2 represent the two nearest centroids to N ’s pivot (p∗), with the
corresponding distances d1 and d2 (where d2 > d1); N.p∗ refers to the
pivot of N ′ and NC .p refers to the pivot of NC .

Similarly, if a node N was assigned to the cluster a(N) in
the previous iteration, we can compute the distance between
N and the centroid of cluster a(N), which denotes ca(N). If
the upper bound on the distance between N ’s points and ca(N)

is smaller than the inter bound, i.e.,

∥N.p∗ − ca(N)∥+N.r <
cb[a(N)]

2
. (5)

Then all the spatial vectors in the node N can be directly
assigned to cluster a(N) in the current iteration; otherwise,
we search for the two nearest centroids, cn1

and cn2
, of N ’s

pivot, and denote the corresponding distances as d1 and d2,
where d2 > d1. If the distance gap d2 − d1 is bigger than
2N.r, all the spatial vectors in the node N can be assigned to
the cluster with centroid cn1 :

d2 −N.r ≥ d1 +N.r → a(N) = n1. (6)

If the node N still cannot be assigned, we split N into two
(e.g., the two small red dotted circles in Fig. 4) and repeat the
above process for each child node. If the node N is a leaf,
we search for the nearest centroid of each spatial vector in N
and assign the spatial vectors to their nearest centroids.

The bottleneck in the above process is searching for the
nearest centroids of an index node (or a spatial vector). A
naı̈ve approach would be to compute the distance from the
index node (or spatial vector) to each of the centroids, which
is computationally expensive. In the following, we use kNN
to search for the nearest centroids efficiently.

Using kNN to Search for (Two) Nearest Centroids. To find
the two nearest centroids of an index node, checking if all
k centroids are not pruned by the inter bound has a worst-
case time complexity of O(k). Here, we use the kNN search
method based on the index structure of the centroids. This
method reduces the time complexity to O(log2 k) on average,
by pruning a set of centroids in a centroid index node if its
lower bound to the query vector q is larger than the current
results held in a priority queue H . Initially, H is filled with
arbitrarily large numbers if no result has been found. We can
prune certain centroid nodes in advance by deriving a tight
upper bound on the distance from the query vector q to its
two nearest centroids, as detailed below.

kNN Bounds Inherited from Parent Nodes. To further prune
centroid nodes during the kNN search, we compute an upper

bound on the distance from the pivot of a node (N
′
.p∗) to its

two nearest neighbors:

ub1(N
′
.p∗) = d1(N.p∗) +N.r,

ub2(N
′
.p∗) = d2(N.p∗) +N.r,

(7)

where N is the parent node of N
′
; d1(N.p∗) and d2(N.p∗)

are the distances from N.p∗ to its two nearest centroids, as
shown in Fig. 4. When searching for the two nearest centroids
of N

′
.p∗, we can prune a centroid node NC , if the lower

bound on the distance between the centroids in NC and N
′
.p∗

is larger than ub2(N
′
.p∗),

∥N
′
.p∗ −NC .p

∗∥ −NC .r > ub2(N
′
.p∗). (8)

If we search for the nearest centroid of N
′
.p∗, we can

replace ub2(N
′
.p∗) with ub1(N

′
.p∗) in the above inequality

for pruning centroid nodes.

Accelerating Inter Bound Computation. To compute a tight
inter bound for a centroid cj , we need to find the minimum
distance from cj to other centroids. In contrast to [64] which
computes the pairwise distances between centroids, we use
kNN to search for the nearest centroid of cj efficiently. We
also derive an upper bound on the distance from cj to its
nearest centroid to further prune centroid nodes. Let cb[j]
denote the distance from cj to its nearest centroid in the
previous iteration of the algorithm; ∆[j] denote the drift of
cj ; and max(∆) denote the maximum drift of cj’s nearest
centroid, the upper bound is defined as:

ub = cb[j] + ∆[j] + max(∆). (9)

In summary, we have used kNN to accelerate various
components of our approach: 1) inter bound computation with
k = 2; 2) node assignment with k = 2; and 3) spatial vector
assignment with k = 1. All of them can be accelerated by an
update-free upper bound from parent nodes.

B. Algorithm Design

Algorithm 1 shows the process of pruning mechanism
over Dask-means. After creating the spatial vector index
on D and the centroid index on the initial k centroids,
Dask-means uses recursion to traverse the spatial vector
index and centroid index to conduct the assignment with
a bound-armed kNN search. After assigning all the spatial
vectors to their nearest centroid, it refines the centroids and
checks whether any of the centroids move; if so, it continues.
To refine the new centroid efficiently, Dask-means maintains
a dynamic sum vector sv(j) for each cluster with a unique
id j. It updates sv(j) when a spatial vector p moves in
(sv(j) = sv(j)+p) or out (sv(j) = sv(j)−p) (see Lines 25
and 38), where p can be replaced by N.p∗ · |N | if a node N

moves. Finally, a new centroid cj can be computed by sv(j)
|Sj |

in Line 12. Our algorithm can be easily implemented with
two recursive traversal functions presented below. Notably,
We analyze the time complexity of the proposed pruning
mechanism in Appendixes VIII-A due to the page limitation.

Algorithm 1: Accelerator(k, D, M)
Input: k: the number of clusters, D: dataset, M : available

main memory
Output: k centroids: C = {c1, . . . , ck}

1 Create Ball-tree on D according to M , get the root node R;
2 Initialize centroids C according to k and D;
3 it← 1;
4 while did not converge do
5 Create Ball-tree on C and get root node RC ;
6 foreach cj ∈ C do
7 Set ub as ∞ if it = 1 else set ub using Eq. (9);
8 [Q,H]← kNN(2, cj , RC , ub);
9 cb[j]← H[2]; // defined in Eq.(3)

10 [S, sv]←Assign(R, RC , ∞);
11 foreach cj ∈ C do
12 Refine centroid: cj ← sv(j)

|Sj |
, and compute ∆[j] ;

13 it← it+ 1;
14 return C;

15 Function Assign(N , RC , ub):
Input: N : node (or spatial vector) to be assigned, RC :

root node of centroid index, ub: upper bound
Output: S: cluster with nodes & spatial vectors, sv:

sum vector of cluster S16
17 if N is node then
18 if ∥N.p∗ − ca(N)∥+N.r < cb[a(N)]

2
then

19 Assign node N to cluster a(N);
20 return
21 [Q,H]← kNN(2, N.p∗, RC , ub);
22 cn1 , cn2 , d1, d2 ← Q[1], Q[2], H[1], H[2];
23 if (d2 − d1) > 2 ∗N.r then
24 if a(N) ̸= n1 then
25 Update Sa(N), sv(a(N)) and Sn1 , sv(n1);
26 Assign node N to cluster n1;
27 return
28 else
29 foreach child node or spatial vector N

′
of N do

30 Assign(N
′
, RC , d2 +N.r);

31 else
32 if ∥N − ca(N)∥ < cb[a(N)]

2
then

33 Assign spatial vector N to cluster a(N);
34 return
35 [Q,H]← kNN(1, N,RC , ub);
36 cn1 ← Q[1];
37 if a(N) ̸= n1 then
38 Update Sa(N), sv(a(N)), Sn1 , and sv(n1);
39 Assign spatial vector N to cluster n1;
40 return [S, sv];
41

Function kNN(k, q, NC , ub):
Input: k: the number of neighbors, q: query vector, NC :

centroid node, ub: upper bound distance to the
nearest centroid

Output: Q: a priority queue holding kNN, H: a priority
queue holding distances of the kNN42

43 Initialize the distances in the priority queue H to ub;
44 if NC is a leaf node then
45 foreach spatial vector pi ∈ NC do
46 d← ∥pi − q∥;
47 if d < H[k] then
48 Update Q and H using pi and d;
49 else
50 foreach child node N

′
C of NC do

51 d← ∥q−N
′
C .p

∗∥ −N
′
C .r;

52 if d < H[k] then
53 kNN(k, q, N

′
C , H[k]);

54 return [Q,H];

(b) Runtime Prediction (c) Runtime Adjustment(a) Memory Estimation

Iteration Number

LR
�

Posterior ��

Adjust
NLR

� = [�1, �2, …, ��, ��+1, …, ��]

A k-means Task

Output: Predicted Memory

�′ = [�1, �2, …, ��, ��+1′ , …, ��′]

Resource-
constrained
Device

Limited
Memory �

 Mapping Function

Leaf Node
Capacity

Output: Update Runtime

� = �0=1
� ��0��0 + �1=�+1

� ��1��+1
′

Input: Dataset Input: k

Output: Predicted Runtime

Input: �1, �2, …, ��−1

Features

Feature Extraction

Remaining Runtime

Fig. 5. Overview of our lightweight cost estimator, where yi denotes the
actual runtime for the i-th iteration (i = 1, 2, . . . , q), and ŷj represents the
predicted runtime for the j-th iteration (j = 1, 2, . . . , q).

Recursive Traversal on Spatial Vector Index. The function
Assign traverses the spatial vector index to assign spatial
vectors in batch or one by one. From the root node of the
spatial vector index, the function searches for the two nearest
centroids using kNN. After computing the distance gap d2−d1,
it checks whether the centroid can be pruned; if not, it sends
the bound to its child nodes and performs another Assign
operation recursively.

Recursive Traversal on Centroid Index. Function kNN
recursively searches the centroid index to get one or two
nearest centroids, using an upper bound ub to prune certain
centroid nodes, and ub is initialized as the bound from the
parent node and is updated with the latest centroid’s distance
found in H . A centroid node can be pruned if the lower bound
on the distance from the query vector to each of the centroids
in the node is greater than ub.

V. LIGHTWEIGHT COST ESTIMATOR

Overview. We design a lightweight cost estimator to acceler-
ate the k-means algorithm. Firstly, as shown in Fig. 5(a), we
propose a memory estimation method to predict memory costs
by building a mapping function between the index and the
memory. This method also allows us to create memory-tunable
indexes under memory constraints, thereby accelerating the k-
means tasks. Secondly, as shown in Fig. 5(b), we predict the
runtime of the k-means task by estimating the iteration number
using a linear regressor (LR) and the runtime of each iteration
using a non-linear regressor (NLR). Finally, as shown in
Fig. 5(c), we monitor the progress of the k-means task by
dynamically updating the remaining runtime. Specifically, we
use posterior information from the last iteration of the k-means
task to adjust the predicted runtime using a Gaussian Process
(GP) with an asymmetric kernel function.

A. Memory Cost Estimation

The memory required for the k-means algorithm includes
storing the dataset, maintaining the bounds, and the mem-
ory occupied by the indexing structure. Besides storing the
dataset, the additional memory required is solely related to
the indexing structure due to the fact that Dask-means does
not maintain any bound. Hence, we estimate the memory cost
of the index by establishing a mapping function between the
leaf node capacity and the memory cost, denoted as m. For
the index (using the balanced Ball-tree structure), each node
includes a vector (a center of each partitioned sub-space, 3

dimensions), three floats (radius r, number of spatial vectors
covered, cluster ID), and two pointers to child nodes (left and
right) or a set of spatial vectors in leaf nodes (up to capacity f).
Thus, we estimate the memory cost of a leaf node as 3+3+f ,
and an internal node as 3+3+2 = 8. Then the overall memory
cost (number of floats) of all the nodes is:

M(n, f) = ⌈2n
f
⌉ · (6 + f) + (⌈2n

f
⌉ − 1) · 8

≈ 2n+
28n

f
− 16,

(10)

where ⌈ 2n
f ⌉ and ⌈ 2n

f ⌉ − 1 are the numbers of leaf nodes and
internal nodes, respectively. This estimation is based on the
assumption that each leaf node has f

2 spatial vectors, and the
balanced Ball-tree with a height ⌈log2 2n

f ⌉. It is worth noting
that, in the real case, most nodes are not fully filled – they are
half full on average. Therefore, we double the number of leaf
nodes and internal nodes. Similarly, the centroid index also
occupies M(k, f) units of memory.3

Moreover, the array used to indicate which cluster each
spatial vector is assigned to will occupy n integers. This array
stores the cluster IDs for the spatial vectors and helps identify
which clusters they belong to. Hence, compared to Lloyd’s
algorithm, Dask-means requires additional memory, which
can be described as follows:

m =M(n, f) +M(k, f) + n ≈ (2 +
28

f
)(n+ k)− 32+ n. (11)

Based on this analysis, we can adjust the node capacity f
according to the available memory m when clustering must
be performed in resource-constrained devices,

Memory-tunable Index. A common index structure, such
as the kd-tree and cover-tree used in [50], needs to store the
leaf nodes as two spatial vectors at most, and the memory
cost is at least M(n, 2), which is much higher than our index,
which utilizes the ball-true structure. Instead, we automatically
configure the leaf node capacity f (the leaf node size of two
index trees) based on the memory constraint, denoted as m

′
.

Specifically, under a given memory constraint m
′
, f can be

calculated using Eq. (11) as follows:

f ≈ 28(n+ k)

m′ − 3n+ 32− 2k
. (12)

Overall, no bound is maintained for each spatial vector, and
although we need to maintain an inter bound for each centroid
in each iteration, the cost is negligible as k ≪ n. Hence,
the size of our index can be auto-configured according to the
available memory via tuning the leaf node capacity f .

B. Runtime Prediction

1) Non-Linear Regressor: Unlike traditional methods [33],
[57] that rely on training samples to directly predict k-means
task runtime, denoted as t, our approach estimates the total
runtime by predicting the iteration number and each iteration’s

3Here, we assume using a 64bit system on resource-constrained devices.

runtime, respectively. Firstly, we estimate the k-means itera-
tion number by using a linear regressor. Specifically, instead
of using a positive integer to represent the iteration number,
denoted as υ, we use a dummy array, denoted as u, which is
composed of 1s in the first υ positions and 0s in the remaining
positions. For example, if υ = 2 and the maximum iteration
number, denoted as q, is 5, then u = [1, 1, 0, 0, 0].

Then, we predict each iteration’s runtime by designing a
polynomial expression in a non-linear regressor. Finally, we
calculate the total runtime as shown below:

t =

q∑
i=1

ui × ŷi, (13)

where ui is the value at the i-th position in u, and yi is the
predicted runtime of the i-th iteration.

Iteration Number Estimation. We predict the iteration
number υ using a linear regressor, such as multiple linear
regression [54], which builds the function from the meta-
feature to υ. Notably, extracting a meta-feature to describe (or
represent) a dataset, such as n, k, and d, is not informative.
Hence, in addition to these features, we also extract novel
and more complex features to capture certain properties of
data distribution based on our index. Specifically, the index
construction actually conducts a more in-depth scan of the
spatial vectors and reveals whether the spatial vectors assemble
well in the space. Hence, the information can include tree
depth, number of leaf nodes, number of internal nodes, and
average spatial vectors per leaf node.

Building Non-linear Regressor. We design a non-linear
regressor with u to model how meta-features, including n,
k, d, and f , affect the runtime of k-means. We notice that the
extracted meta-features are not independent. For example, n
and f jointly determine the index structure, which affects the
efficiency of kNN and affects the runtime of the assignment
process in k-means. Therefore, we need to consider interaction
terms (or interaction feature), such as nf . The regressor
considering interaction feature can be expressed using a poly-
nomial expression as follows:

ŷj =

λ∑
i1,i2,...,iλ=0

ujβi1i2...iλx
i1
j1x

i2
j2 . . . x

iλ
jλ + e, (14)

where λ is the number of meta-features, βi1i2...iλ is the
regression coefficient, (xj1, xj2, · · · , xjλ) are the meta-
features obtained for the j-th iteration, and e is the residual
term. Then the runtime of the k-means task, denoted as ŷ, can
be represented as follows:

ŷ =

1
1

.

.

.
1

′

u1 0 · · · 0
0 u2 · · · 0

.

.

. 0 · · ·
.
.
.

0 0 · · · uq

x11 x12 · · ·
∑λ

i=1 xλ
1i

x21 x22 · · ·
∑λ

i=1 xλ
2i

.

.

.

.

.

. · · ·
.
.
.

xq1 xq2 · · ·
∑λ

i=1 xλ
qi

β1

β2

.

.

.

β∑λ
i=1

(
λ
i

)

+e.

(15)

For simplicity, we represent Eq. (15) with the following
equation:

ŷ = 1′uxb+ e, (16)

where 1 ∈ R1×q , u ∈ Rq×q , x ∈ Rq×
∑λ

i=1 (
λ
i),

and b ∈ R
∑λ

i=1 (
λ
i)×1. Given n1 samples, we represent

[1′ux1,1
′ux2, . . . ,1

′uxn]
′ as X. The resulting non-linear

model then can be solved using ordinary least squares (OLS)
[42]. The solution for b is as follows:

b = [

n∑
i=1

1′uxi1
′uxi]

−1[1′ux1,1
′ux2, · · · ,1′uxn]y. (17)

Therefore, we feed u and x into Eq. (17) to obtain b, and
subsequently use the trained regressor to predict t.

2) Runtime Adjustment with GP: We design a GP with an
asymmetric kernel function to iteratively adjust the predicted
runtime Ŷ, hence monitoring the progress of k-means. Specifi-
cally, once the actual runtime yi for the i-th iteration becomes
available at the end of that iteration, we can figure out the
posterior information by examining the difference between yi
and ŷi to refine Ŷ. This way, with each completed iteration,
we can further adjust the estimated runtime.

A commonly used method for adjusting the predicted run-
time of iterative algorithms is Weighted Average [63]. This
method assumes that the predicted time for the next iteration
depends solely on previous iterations. However, in practice,
information from the current iteration can affect the runtime
of all subsequent iterations. For example, if k-means converges
within the current iteration, the runtime for all future iterations
will be 0, as the k-means task is complete. To address this
limitation, GP is a better choice because GP adjusts the
prediction of runtime for all iterations based on the degree
of correlation between subsequent and current iterations.

Formulation of GP. We build a GP over the predicted runtime,
which can be expressed as follows:

g(i) ∼ GP(µ(i), cov(i, i
′
)), (18)

where g(i) is the ratio between the predicted runtime ŷi and
the actual runtime yi for the i-th iteration, µ(i) represents the
mean of g(i), and cov(i, i

′
) represents the kernel function (or

covariance function) that describes the correlation between the
i-th iteration and the i

′
-th iteration. Notably, when the given

k-means task has not yet run, we assume perfectly accurate
predictions, i.e., ŷi = yi, which implies g(i) = 1. Under
this condition, the initial mean function of the GP becomes
a constant function equal to 1 for all iterations.

Asymmetric Kernel Function of GP. Unlike a classical GP
[32], where posterior information can be bidirectional. For
example, A commonly used kernel function is the Radial Basis
Function (KBF) kernel [32], which can be shown as follows:

cov(i, i
′
) = exp

(
−∥i′ − i∥2

2σ2

)
, (19)

where σ is a hyperparameter for adjusting the correlation
between the i-th iteration and the i

′
-th iteration. Here we need

to account for the fact that posterior information from the
current iteration of k-means affects only subsequent iterations
(i.e., completed iterations influence upcoming ones), which

TABLE III
AN OVERVIEW OF THE DATASETS (M FOR MILLION).

Dataset Dimensionality Scale Description

T-drive 2 1M Trajectory data point
Porto 2 1M Trajectory data point

Argo-AVL 2 1M Trajectory data point
Argo-PC 3 1M Point cloud data
3D-RD 3 0.43M Point cloud data

Shapenet 3 1M Point cloud data
Apoll-TD 128 0.5M Embedded trajectory data

Argo-ETD 256 0.5M Embedded trajectory data

means the correlation should only propagate in the direction
of increasing i. Therefore, we design the specific expressions
for cov(i, i

′
). To simulate the unidirectional propagation of

correlation in an iterative process, we design a new kernel
function, which is shown as follows:

cov(i, i
′
) =

0, if i
′ − i ≤ −1;

exp

(
−h(i

′
−i)2

2σ2

)
, if i

′ − i > −1;
(20)

where the iteration numbers i
′

correlated with i are restricted
to the interval (i−1,+∞). This implies that the actual runtime
of the i-th iteration only affects the iterations within the range
of (i − 1,+∞). Moreover, To ensure that the convergence
function is continuously differentiable over its domain, we
design h(δ) as follows:

h(δ) =

{
ln (δ + 1), if − 1 < δ ≤ 0;

δ, if δ > 0;
(21)

where, h(δ) ensures differentiability of cov(i, i
′
) at (i

′ −
i) = −1, thus guaranteeing the differentiability of the kernel
function in its’ domain.

VI. EXPERIMENTS

We verify the following three questions: 1) whether
Dask-means outperforms existing algorithms for (very)
large n and k, such as n = 107 and k = 104; 2) whether
Dask-means uses less memory and performs better com-
pared to other SOTA algorithms; and 3) whether the proposed
cost estimator in Dask-means shows superior accuracy in
estimating runtime and memory cost.

A. Experimental Settings

Dataset. Dask-means is designed for spatial vectors from
sensors such as GPS and lidar. For 2D datasets, we select T-
drive [68], Porto [3], and Argo-AVL [62], a trajectory dataset
from test vehicles in a specific area. For 3D datasets, we
select point cloud data including Argo-PC [62], 3D-RD [1],
and Shapenet [2]. We also validate our algorithm on high-
dimensional datasets. The trajectory datasets are from Argo-
verse, denoted as Argo-ETD, and ApolloScape, referred to as
Apoll-TD, with each trajectory data embedded into fixed-length
vectors. The details are provided in Table III.

Implementations. We implement Dask-means and com-
parisons using C++. We test the performance of our algorithm

TABLE IV
THE PERFORMANCE OF DASK-MEANS IN TERMS OF RUNTIME.

Dataset Settings Lloyd NoBound Dual-tree Hamerly Drake Yinyang Elkan NoInB NokNN Dask-means

T-drive
k = 102 128.10 954.26 65.47 34.31 88.21 70.25 21.52 19.55 30.16 13.13
k = 103 1234.78 385.21 98.87 295.60 541.52 649.61 159.23 385.21 285.01 28.49
k = 104 24755.76 6225.76 601.22 5853.36 N/A 13954.17 N/A 6225.76 15547.69 211.36

Porto
k = 102 131.11 1119.78 72.51 36.71 72.95 71.22 23.61 23.05 32.61 15.13
k = 103 1227.00 412.38 102.86 298.38 520.28 642.69 162.86 412.38 314.19 32.07
k = 104 12295.26 3036.00 300.22 2950.58 N/A 6933.70 N/A 3036.00 8822.68 237.80

Argo-AVL
k = 102 133.59 140.65 61.95 34.15 84.61 68.37 19.58 19.46 31.80 10.21
k = 103 1261.24 316.66 101.94 296.20 757.24 639.45 160.00 316.66 378.36 25.93
k = 104 12512.56 3093.48 285.84 2886.71 N/A 6853.31 N/A 3093.48 8858.64 103.83

Argo-PC
k = 102 135.33 112.83 43.82 42.76 77.42 76.00 19.22 11.68 13.69 8.17
k = 103 1319.38 301.65 63.82 387.85 542.36 711.50 161.41 301.65 238.85 16.85
k = 104 13247.99 3334.37 270.62 3824.05 N/A 7399.46 N/A 3334.37 9316.83 78.56

3D-RD
k = 102 59.16 34.50 19.37 18.98 19.25 33.29 9.25 21.81 28.03 6.71
k = 103 573.37 135.14 37.52 165.94 230.50 309.79 75.27 135.14 430.44 21.99
k = 104 5754.00 1724.97 188.54 1631.71 2546.64 3255.45 853.89 1724.97 5545.52 47.96

Shapenet
k = 102 139.69 143.99 48.89 44.80 49.88 80.66 24.05 87.02 260.27 33.54
k = 103 1352.89 319.90 58.82 386.38 557.32 741.57 178.24 319.90 1174.97 77.57
k = 104 13160.80 3368.25 227.03 3794.34 N/A 7674.99 N/A 3368.25 12926.79 183.74

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

T-drive

0 10 20
Iterations

101

Ru
nt

im
e

(s
)

Porto

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

Argo-AVL

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

Argo-PC

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

3D-RD

0 10 20
Iterations

101

Ru
nt

im
e

(s
)

Shapenet
Lloyd's Algorithm NoInB NokNN Dask-means

Fig. 6. The performance of kNN and inter bound in acceleration

on both a server and a smartphone: 1) The server, equipped
with an i9-14900KF CPU and 128 GB RAM, allows us to
simulate the k-means task on resource-limited devices and
easily implement our lightweight estimator to predict runtime
and memory usage; and 2) We test our algorithm on an
OPPO Reno11 5G Android smartphone [5] equipped with
a Dimensity 8200 CPU and 12 GB of RAM. Due to page
limitations, the detailed information about the smartphone (see
Table IX) and images of the k-means algorithms running
on it (see Table 15) are presented in the Appendix VIII.
This validation demonstrates its superior performance on edge
devices compared to other algorithms. Our code is publicly
available on GitHub [6].

Comparisons. To answer the first two questions, besides
Lloyd’s algorithm, we compare Dask-means with the most
memory-efficient k-means algorithms including NoBound
[64] and Hamerly [26], and three widely-used algorithms,
including Dual-tree [50], Drake [19], and Yinyang [17].
Moreover, we compare Dask-means with the k-means
algorithm used in scikit-learn [48], known as Elkan [21].

To answer the third question, we use several SOTA cost es-
timators as competitors (see Section II-D), including XGBoost

[24], DisNet [20], and AutoML [43] to predict runtime.
We configure the XGBoost with a learning rate of 0.1 and
restrict the maximum depth of each tree to 5. Additionally,
it specifies that 100 trees are used in the XGBoost model,
with a column sampling ratio of 0.3 per tree. Moreover, we
set up the DisNet with two hidden layers, the first having

128 neurons and the second with 64 neurons, both of which
use ReLU activation. The DisNet model is trained for 1000
epochs with a default learning rate of 1e-4. For AutoML, we set
the regularization coefficient as 0.1 and then run the model at
a maximum iteration number of 1000 times with the tolerance
for convergence set as 0.1. For memory prediction, although
there are many estimation methods (see Section II-D), none are
designed for k-means tasks in resource-constrained devices.

B. Efficiency of Proposed Accelerator

kNN and Inter Bound’s Effectiveness in Accelerating. We
demonstrate the effectiveness of kNN and the inter bound used
in Dask-means. The algorithm only using the inter bound is
called NokNN, while the one only using kNN is called NoInB.
By default, we set the leaf node capacity to f = 30. We also
limit the maximum number of iterations to 20 to save time.
This is because, as depicted in Fig. 6, each iteration’s runtime
has already stabilized after the 15-th and 20-th iterations.
Observations. (1) Both NokNN and NoInB can efficiently ac-
celerate Lloyd’s algorithm by pruning the number of distance
computations. (2) NoInB exhibits higher efficiency compared
to NokNN. This indicates that using kNN yields higher pruning
power than using inter bound.

Comparisons with SOTAs. We compare Dask-means with
other algorithms from two aspects, including the runtime of
each iteration and the total runtime of k-means algorithms
(due to page limitations, we provide a comparison of the
runtime of each iteration in Appendix VIII-B). As shown

TABLE V
VALIDATING PRUNING POWER OF DASK-MEANS IN HIGH-DIMENSIONAL DATASETS.

Dataset Settings Lloyd NoBound Dual-tree Hamerly Drake Yinyang Elkan NoInB NokNN Dask-means

Apoll-TD
k = 102 26.11 217.18 47.25 23.07 108.68 49.53 26.07 24.19 42.99 24.04
k = 103 258.03 1897.33 158.05 227.64 1416.37 491.13 261.01 40.65 263.91 40.45
k = 104 2826.21 N/A 1352.58 2327.68 N/A 5119.22 2815.43 193.18 2547.86 192.69

Argo-ETD
k = 102 49.52 408.68 100.50 45.21 211.17 94.99 49.58 46.42 83.35 46.23
k = 103 495.19 3700.64 323.40 448.26 2731.09 954.21 496.54 78.01 521.65 77.59
k = 104 5680.86 N/A 2719.24 4780.29 N/A 10468.70 5864.86 384.28 5169.44 378.82

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

T-drive

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

Porto

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

Argo-AVL

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

Argo-PC

0 10 20
Iterations

10 1

100

101

Ru
nt

im
e

(s
)

3D-RD

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

Shapenet

(a) The data scale is n/10.

Lloyd's Algorithm NoBound Dual-tree Hamerly Yinyang Dask-means

0 10 20
Iterations

100

101

102

Ru
nt

im
e

(s
)

T-drive

0 10 20
Iterations

100

101

102

Ru
nt

im
e

(s
)

Porto

0 10 20
Iterations

100

101

102

Ru
nt

im
e

(s
)

Argo-AVL

0 10 20
Iterations

100

101

102

Ru
nt

im
e

(s
)

Argo-PC

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

3D-RD

0 10 20
Iterations

100

101

102

Ru
nt

im
e

(s
)

Shapenet

(b) The data scale is n/2.

Lloyd's Algorithm NoBound Dual-tree Hamerly Yinyang Dask-means

Fig. 7. The per-iteration runtime of the k-means algorithm under different data scales.

k = 102, k = 103, k = 104

10 1

102

Ru
nt

im
e

(s
)

T-drive

k = 102, k = 103, k = 104

10 1

102

Ru
nt

im
e

(s
)

Porto

k = 102, k = 103, k = 104

10 1

102

Ru
nt

im
e

(s
)

Argo-AVL

k = 102, k = 103, k = 104

10 1

102

Ru
nt

im
e

(s
)

Argo-PC

k = 102, k = 103, k = 104

10 1

102

Ru
nt

im
e

(s
)

3D-RD

k = 102, k = 103, k = 104

10 1

102

Ru
nt

im
e

(s
)

Shapenet
Lloyd's Algorithm NoBound Dual-tree Hamerly Yinyang Dask-means

Fig. 8. The initialization runtime of each k-means algorithm.

in Table IV, we evaluate the efficiency of Dask-means by
comparing its runtime against SOTA k-means algorithms.
Observations. (1) When k is small (e.g., k = 102),
Dask-means performs better than most SOTAs in pruning
power in most cases, but it’s not always the best. For example,
Elkan outperforms it because Dask-means requires addi-
tional time to construct the spatial vector index and centroid
index, while kNN on these indexes is inefficient when k is
small. (2) Whereas when k is large, Dask-means demon-
strates superior runtime performance due to the effective
pruning power by the centroid index. For instance, when
k = 104, Dask-means achieves a speedup of over 168 times
compared to Lloyd’s algorithm on the Argo-PC dataset. (3)
When k = 104, Elkan is unable to execute because it requires
to store n×k lower bounds, which leads to excessive memory
cost. Similarly, Drake is unable to execute because it requires
storing at least k

8 lower bounds for each spatial vector, which
is memory-intensive. (4) As shown in Fig. 7, Dask-means
demonstrates the best acceleration in almost all data scales.
However, its performance diminishes with smaller data scales.
This decline is attributed to the fact that, at smaller scales, our
proposed kNN search for spatial vectors on the index does
not significantly outperform one-by-one searching, while still
requiring additional time to build the index.

Efficiency of Initialization. As shown in Fig. 8, we compare
the initialization times of various k-means algorithms, such

as the time for building the centroid index. This comparison
helps clarify that the limited acceleration effects of certain
algorithms are caused by the significant time consumed during
their initialization. It is worth noting that we exclude Elkan
and Drake from our comparisons due to their lack of memory
efficiency. At k = 104, their initialization processes would
result in excessive memory overhead on the server.
Observations. (1) The initialization time of NoBound is the
longest because it requires computing an n×d distance matrix,
which may contribute to its inefficiency. (2) The initialization
time of Dask-means is longer than that of Lloyd’s algorithm,
Hamerly, and Yinyang due to the additional time needed
to build an index over spatial vectors. (3) Different values
of k have a significant impact on construction time, but the
initialization time of Dask-means is less affected.

Comparison of Space Efficiency. We compare Dask-means
with the other SOTAs in memory cost in Fig. 9 (we set k =
103). Memory cost is the amount of memory required to store
the information, such as indexes and bounds in Dask-means.
Observations. (1) Elkan and Drake consume significantly
more memory than other algorithms. Specifically, Elkan
requires storing n×k lower bounds to avoid distance computa-
tions, while Drake stores k

8 to k
4 lower bounds for each spatial

vector. In contrast, Dask-means uses less than 1% of the
memory consumed by these algorithms. Moreover, Yinyang
also consumes more memory than Dask-means because it

TABLE VI
AVERAGE PRECISION OF OUR MEMORY ESTIMATION METHOD.

Parameters Accuracy

Increasing k
k = 10 k = 103 k = 104 k = 5× 104

0.963 0.963 0.963 0.963

Increasing n
n

′
= 0.01n n

′
= 0.05n n

′
= 0.25n n

′
= n

0.989 0.983 0.976 0.974

Increasing f
f = 30 f = 100 f = 150 f = 200
0.964 0.992 0.993 0.997

102

M
em

or
y

(M
B)

T-drive

102

M
em

or
y

(M
B)

Porto

102

M
em

or
y

(M
B)

Argo-AVL

102

103

M
em

or
y

(M
B)

Argo-PC

101

102

M
em

or
y

(M
B)

3D-RD

102

103
M

em
or

y
(M

B)
Shapenet

NoBound
Dual-tree

Hamerly
Drake

Yinyang
Elkan

Dask-means

Fig. 9. The performance of Dask-means in terms of memory cost.

needs to store the distance from each spatial vector to its
assigned cluster. (3) Although NoBound uses little memory,
its pruning power is much worse than Dask-means, as
shown in Table IV.

Verification on High-dimensional Datasets. We compare
Dask-means with selected k-means algorithms on high-
dimensional datasets, including Apoll-TD and Argo-ETD, focus-
ing on pruning power via runtime. The runtime performance
of Dask-means is shown in Table V.
Observations. Dask-means performs the best in most cases.
However, when tackling high-dimensional datasets, almost all
k-means algorithms perform poorly. This is due to the “curse
of dimensionality”. It is worth noting that the acceleration
performance of Dask-means is significantly lower in high-
dimensional cases compared to low-dimensional ones. For ex-
ample, it is only about 15 times faster than Lloyd’s algorithm.

Verification on Edge Devices. We validate Dask-means
on a smartphone and compare its runtime with SOTAs. Due
to the maximum response time limits imposed by the Android
environment on program execution, the data scale is set to 1

20
of the original dataset, with k = 100.
Observations. (1) As shown in Fig. 10(a), Dask-means is
generally very fast, although it can be slower than Drake
in some cases. However, Drake needs to store between k

8

and k
4 lower bounds for each spatial vector, which consumes

significantly more memory than Dask-means, making it not
memory-efficient. (2) As shown in Fig. 10(b), in some cases,
Dask-means consumes more memory than Hamerly, as
Hamerly only requires storing one upper bound and one
lower bound for each spatial vector. However, its pruning
power is weaker compared to Dask-means.

Summary of Lessons Learned. Through the evaluation of
Dask-means in runtime and memory cost, we further learn:

• Both NokNN and NoInB accelerate Lloyd’s algorithm, but
NoInB is much more efficient, likely because our estimated
bounds are too loose.

T-drive Porto Argo-AVL Argo-PC 3D-RD Shapenet
 (a) Runtime of each k-means algorithm.

101Ru
nt

im
e

(s
)

T-drive Porto Argo-AVL Argo-PC 3D-RD Shapenet
 (b) Memory cost of each k-means algorithm.

101

102

M
em

or
y

(M
B)

Lloyd's Algorithm
NoBound

Dual-tree
Hamerly

Drake
Yinyang

Elkan
Dask-means

Fig. 10. The performance of Dask-means in the smartphone.
• The value of k has only a slight effect on efficiency. This is

consistent with the observation that log2 k and the dataset
scale n have a linear relation with the running time.

• For high-dimensional datasets, Dask-means can still ac-
celerate Lloyd’s Algorithm; however, its acceleration perfor-
mance is significantly lower than that for low-dimensional
datasets due to the “curse of dimensionality”.

C. Evaluation of Our Cost Estimator

We test our cost estimator to demonstrate its superiority in
predicting memory cost and runtime. We generate 2000 k-
means tasks as a sample set and divide them into three parts:
80% for training, 10% for validation, and 10% for testing.
For each k-means task, we randomly select a dataset with a
size ranging from 1× 105 to 1× 108 and choose k randomly
between 1 × 102 and 1 × 104. We then extract the features,
run Dask-means, and record the runtime. It is important to
note that for predicting runtime, we choose β = 4 and σ = 50
as default parameters (details on the selection of a suitable β
and σ can be found in Appendix VIII-C).

Memory Cost Estimation. We first show that the proposed
cost estimator can accurately estimate the memory cost of
Dask-means. It is worth noting that the estimated memory
cost is often less than the actual memory used (see Sec-
tion V-A). Hence, we measure the accuracy of our memory
estimation method using the ratio of the estimated memory to
the actual memory consumed.
Observations. As shown in Table VI, when k (i.e., the num-
ber of centroids) increases, the prediction accuracy of our
proposed cost estimator remains unchanged. This is because
the memory used by the centroid index is much smaller
than the memory used to construct the spatial vector index.
Moreover, as n

′
(the number of spatial vectors for k-means)

increases, the prediction accuracy of our proposed cost esti-
mator decreases. This is because an increase in dataset scale
leads to more nodes in index structure, and we estimate
memory usage by assuming that each index node only includes
the spatial vector and pointer it stores, without considering
additional information like locks in the “vector” structure.
Hence, increasing the number of nodes adds more unestimated
information, reducing the accuracy of the memory estimation.
Similarly, when f increases, the index has fewer nodes,
resulting in higher prediction accuracy.

TABLE VII
THE IMPACT OF THE MEMORY LIMITATION ON DASK-MEANS .

Efficiency
Dataset T-drive Porto Argo-AVL Argo-PC 3D-RD Shapenet

Available Memory (MB) 15 20 30 15 20 30 15 20 30 15 20 30 15 20 30 15 20 30

Runtime (s)
k = 102 13.51 14.82 18.14 15.67 16.59 19.42 10.08 11.03 13.14 8.04 9.14 11.14 6.82 6.63 7.28 32.31 28.01 28.06
k = 103 28.86 25.98 27.15 32.66 28.71 29.39 25.76 20.80 21.87 17.06 15.74 16.46 20.87 21.74 18.38 76.95 93.12 122.15
k = 104 105.32 92.23 83.77 117.40 100.55 89.50 86.72 80.61 67.12 71.70 59.03 49.87 48.41 54.66 68.39 179.13 188.42 199.32

Pruned Vectors (M)
k = 102 18.62 19.32 19.66 18.37 19.15 19.57 18.12 19.06 19.55 19.35 19.68 19.84 6.82 6.90 7.62 8.92 12.20 15.04
k = 103 15.91 17.85 18.92 15.07 17.36 18.63 13.72 16.80 18.49 16.20 18.11 19.19 1.98 3.91 5.79 2.30 5.37 9.37
k = 104 7.24 12.18 15.47 5.50 10.61 14.51 5.16 10.73 15.12 5.10 11.41 15.86 0.09 0.88 2.71 0.02 0.71 3.74

(a) Training Runtime

102

104

Ru
nt

im
e

(m
s)

(b) Prediction Runtime

100

102

Ru
nt

im
e

(m
s)

(c) MSE of Each Model

103

M
SE

(d) MAE of Each Model
101

M
AE

(e) WMAPE of Each Model

100

101

102

W
M

AP
E

(f) sMAPE of Each Model

102

103

104

sM
AP

E

XGBoost DistNet AutoML S-XGBoost S-DistNet S-AutoML Dask-means

Fig. 11. The performance of our cost estimator in terms of predicting runtime.

Impact of Memory Constraints. As shown in Table VII,
under various memory limits, we evaluate the efficiency of
the memory-tunable index for accelerating k-means tasks.
Observations. (1) As shown in Table VII, as memory cost
increases, the number of pruned spatial vectors also rises. A
higher memory cost leads to a smaller f , and kNN search on
an index with a smaller f consistently results in a reduced
search radius. Consequently, more unnecessary spatial vectors
and nodes are pruned, improving the index’s pruning capabil-
ity. (2) We find that as memory increases, the runtime does
not necessarily decrease. This is because, while more memory
improves the index’s pruning power, it also requires additional
time to build the index, which offsets the time saved from
improved pruning. Additionally, as k increases, the runtime
also increases, indicating that k-means converge faster with
smaller values of k.

Comparisons with SOTAs in Runtime Prediction. We use
four metrics [16] to assess the accuracy in terms of runtime:
Mean Squared Error (MSE), Mean Absolute Error (MAE),
Weighted Absolute Mean Percentage Error (WAMPE), and
Symmetric Mean Absolute Percentage Error (SMAPE). Then
we compare our cost estimator with SOTA models, observing
each model’s training time, prediction time, and accuracy in
predicting runtime. Moreover, we modify existing models to
predict each iteration separately and then sum the predictions
to obtain the total runtime. The modified models are labeled
with S-, such as S-XGBoost, S-DisNet, and S-AutoML.
Observations. (1) Fig. 11(a) shows that our cost estimator
has the shortest training time compared to others, similar to
AutoML. This is because both the proposed cost estimator and
AutoML require only one pass through the dataset to obtain
regression parameters. (2) Fig. 11(b) illustrates that prediction
methods like Dask-means and AutoML have similar predic-
tion times, typically a few milliseconds. Additionally, com-
pared to the overall runtime of Dask-means, which requires
several seconds to minutes per iteration, this prediction time is
negligible. (3) Fig. 11(c), (d), (e), and (f) demonstrate that our

cost estimator achieves the highest prediction accuracy, with
the smallest MSE, MAE, WMAPE, and sMAPE compared
to others. Moreover, it shows that using complex iterative
algorithms does not necessarily lead to better performance.
For example, regression models often achieve higher accuracy
than XGBoost. Moreover, models such as XGBoost perform
worse after modification.

Summary of Lessons Learned. Through the evaluation of
our cost estimator, we further learn:
• As the leaf node capacity f increases, the runtime of the k-

means task does not necessarily increase. This is because,
although pruning with a larger radius r has a lower success
probability, the time to build the index also decreases.

• Our cost estimator predicts runtime more accurately than
others. However, it’s important to note that the runtime
of different k-means tasks varies significantly, leading to
discrepancies between predicted and actual times that can
be several times the actual k-means runtime.

• Our runtime adjustment method dynamically corrects run-
time. However, if parameters like σ are not chosen properly,
such as σ = 2, its adjustment capability will significantly
decrease and may decrease prediction accuracy.

VII. CONCLUSIONS

To accelerate k-means for simplifying large-scale spatial
vectors, we leveraged fast kNN search and assigned spatial
vectors to the nearest centroid in batches by indexing on both
spatial vectors and centroids. Without updating the bounds for
the next iteration, novel bounds were designed to further ac-
celerate the kNN search. Moreover, we designed a lightweight
cost estimator to predict the k-means memory cost and runtime
accurately. Experiments on real-world datasets verified the
efficiency of Dask-means on resource-constrained devices.

In future work, we will design a distributed k-means
on resource-constrained devices to leverage the remaining
computational power of edge devices to accelerate k-means.
Additionally, we plan to design a more lightweight and accu-
rate cost estimator and extend it to other iterative algorithms.

REFERENCES

[1] 3d road network (north jutland, denmark). https://networkrepository.
com/3D-spatial-network.php.

[2] Shapenet. https://shapenet.org/.
[3] Taxi service trajectory prediction challenge 2015. https://figshare.com/

articles/dataset/Porto taxi trajectories/12302165.
[4] FlyingFox. https://www.hackster.io/flyingfox/flyingfox-821a16, 2021.
[5] Oppo reno11 5g, 2024. https://www.oppo.com/en/smartphones/

series-reno/reno11/.
[6] Repository of Dask-means. https://github.com/notNNORTH/

Dask-means-cpp, 2024.
[7] TensorFlow Shape Infer . https://malmaud.github.io/tfdocs/shape

inference/, 2024.
[8] T. S. Abdelrahman. Cooperative software-hardware acceleration of k-

means on a tightly coupled CPU-FPGA system. ACM Trans. Archit.
Code Optim., 17(3):20:1–20:24, 2020.

[9] M. Ahmed. Data summarization: a survey. Knowl Inf Syst, 58:249–273,
2019.

[10] E. Albert, S. Genaim, and M. Gómez-Zamalloa. Parametric inference of
memory requirements for garbage collected languages. In ISMM, pages
121–130, 2010.

[11] M. A. Bender, J. Berry, S. D. Hammond, B. Moore, B. Moseley, and
C. A. Phillips. k-Means Clustering on Two-Level Memory Systems. In
MEMSYS, pages 197–205, 2015.

[12] I. Brand, J. Roy, A. Ray, J. Oberlin, and S. Oberlix. PiDrone: An
Autonomous Educational Drone Using Raspberry Pi and Python. In
IROS, pages 5697–5703, 2018.

[13] A. Canziani, A. Paszke, and E. Culurciello. An analysis of deep
neural network models for practical applications. arXiv preprint
arXiv:1605.07678, 2016.

[14] S. Castelo, F. Chirigati, R. Rampin, A. Santos, A. Bessa, and J. Freire.
Auctus: A Dataset Search Engine for Data Augmentation. PVLDB,
14(12):2791 – 2794, 2021.

[15] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays. Argoverse: 3D
Tracking and Forecasting with Rich Maps. In CVPR, pages 8748–8757,
2019.

[16] D. Chicco, M. J. Warrens, and G. Jurman. The coefficient of determi-
nation r-squared is more informative than smape, mae, mape, MSE and
RMSE in regression analysis evaluation. PeerJ Comput. Sci., 7:e623,
2021.

[17] Y. Ding, Y. Zhao, X. Shen, M. Musuvathi, and T. Mytkowicz. Yinyang
K-means: A drop-in replacement of the classic K-means with consistent
speedup. In ICML, pages 579–587, 2015.

[18] T. Doan and J. Kalita. Predicting run time of classification algorithms
using meta-learning. Int. J. Mach. Learn. Cybern., 8(6):1929–1943,
2017.

[19] J. Drake. Faster k-means Clustering. In MS Thesis, 2013.
[20] K. Eggensperger, M. Lindauer, and F. Hutter. Neural networks for

predicting algorithm runtime distributions. In IJCAI, pages 1442–1448,
2018.

[21] C. Elkan. Using the triangle inequality to accelerate k-means. In ICML,
page 147–153, 2003.

[22] Y. Fan, P. Rich, W. E. Allcock, M. E. Papka, and Z. Lan. Trade-off
between prediction accuracy and underestimation rate in job runtime
estimates. In CLUSTER, pages 530–540, 2017.

[23] Y. Gao, Y. Liu, H. Zhang, Z. Li, Y. Zhu, H. Lin, and M. Yang. Estimating
GPU memory consumption of deep learning models. In FSE, pages
1342–1352, 2020.

[24] B. R. Gunnarsson, S. vanden Broucke, and J. D. Weerdt. A direct data
aware LSTM neural network architecture for complete remaining trace
and runtime prediction. IEEE Trans. Serv. Comput., 16(4):2330–2342,
2023.

[25] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun. Deep
Learning for 3D Point Clouds: A Survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–1, 6 2020.

[26] G. Hamerly. Making k-means even faster. In SDM, pages 130–140,
2010.

[27] G. Hamerly and J. Drake. Accelerating Lloyd’s Algorithm for k-Means
Clustering. 2015.

[28] W. He, Z. Jiang, M. Kriby, Y. Xie, X. Jia, D. Yan, and Y. Zhou.
Quantifying and reducing registration uncertainty of spatial vector labels
on earth imagery. In KDD, pages 554–564, 2022.

[29] K. Heo, H. Oh, and H. Yang. Resource-aware program analysis via
online abstraction coarsening. In ICSE, pages 94–104, 2019.

[30] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
A. Markham. RandLA-Net: Efficient Semantic Segmentation of Large-
Scale Point Clouds. In CVPR, pages 11105–11114, 2020.

[31] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown. Algorithm runtime
prediction: Methods and evaluation (extended abstract). In Q. Yang and
M. J. Wooldridge, editors, IJCAI, pages 4197–4201, 2015.

[32] S. Jayasumana, R. I. Hartley, M. Salzmann, H. Li, and M. T. Harandi.
Kernel methods on riemannian manifolds with gaussian RBF kernels.
IEEE Trans. Pattern Anal. Mach. Intell., 37(12):2464–2477, 2015.

[33] T. Kapus and C. Cadar. A segmented memory model for symbolic
execution. In FSE, pages 774–784, 2019.

[34] M. Kleindessner, P. Awasthi, and J. Morgenstern. Fair k-Center Clus-
tering for Data Summarization. In ICML, 2019.

[35] M. Krulis and M. Kratochvı́l. Detailed analysis and optimization of
CUDA k-means algorithm. In ICPP, pages 69:1–69:11, 2020.

[36] I. Lang, A. Manor, and S. Avidan. SampleNet: Differentiable point cloud
sampling. In CVPR, pages 7578–7588, 2020.

[37] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Empirical hardness
models: Methodology and a case study on combinatorial auctions. J.
ACM, 56(4):22:1–22:52, 2009.

[38] Y. Li, K. Zhao, X. Chu, and J. Liu. Speeding up k-Means algorithm by
GPUs. Journal of Computer and System Sciences, 79:216–229, 2013.

[39] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on
Information Theory, 28(2):129–137, 1982.

[40] C. Lv, W. Lin, and B. Zhao. Approximate intrinsic voxel structure for
point cloud simplification. IEEE Trans. Image Process., 30:7241–7255,
2021.

[41] S. Mariam, A. Chew, and C. Meng. Density Based Clustering for 3D
Object Detection in Point Clouds. In CVPR, pages 10608–10617, 2020.

[42] D. Maulud and A. M. Abdulazeez. A review on linear regression
comprehensive in machine learning. Journal of Applied Science and
Technology Trends, 1(2):140–147, 2020.

[43] F. Mohr, M. Wever, A. Tornede, and E. Hüllermeier. Predicting machine
learning pipeline runtimes in the context of automated machine learning.
IEEE Trans. Pattern Anal. Mach. Intell., 43(9):3055–3066, 2021.

[44] A. W. Moore. The Anchors Hierarchy: Using the Triangle Inequality to
Survive High Dimensional Data. In UAI, pages 397–405, 2000.

[45] J. Newling and F. Fleuret. Fast k-means with accurate bounds. In ICML,
pages 936–944, 2016.

[46] J. Newling and F. Fleuret. K-Medoids For K-Means Seeding. In NIPS,
pages 5201–5209, 2017.

[47] S. M. Omohundro. Five Balltree Construction Algorithms. Technical
report, 1989.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
Plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in python. J. Mach. Learn. Res.,
12:2825–2830, 2011.

[49] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation. In CVPR, pages
652–660, 2017.

[50] C. R. R. A Dual-Tree Algorithm for Fast k-means Clustering With Large
k. In SDM, pages 300–308, 2017.

[51] X. Roynard, J. E. Deschaud, and F. Goulette. Paris-Lille-3D: A large
and high-quality ground-truth urban point cloud dataset for automatic
segmentation and classification. International Journal of Robotics
Research, 37(6):545–557, 2018.

[52] P. Ryšavý and G. Hamerly. Geometric methods to accelerate k -means
algorithms. In SDM, pages 324–332, 2016.

[53] J. Shao, H. Zhang, Y. Mao, and J. Zhang. Branchy-GNN: a Device-Edge
Co-Inference Framework for Efficient Point Cloud Processing. Technical
report, 2020.

[54] X. Su, X. Yan, and C.-L. Tsai. Linear regression. Wiley Interdisciplinary
Reviews: Computational Statistics, 4(3):275–294, 2012.

[55] X. Sun, H. Ma, Y. Sun, and M. Liu. A Novel Point Cloud Compression
Algorithm Based on Clustering. IEEE Robotics and Automation Letters,
4(2):2132–2139, 2019.

[56] W. Tang, N. Desai, D. Buettner, and Z. Lan. Analyzing and adjusting
user runtime estimates to improve job scheduling on the blue gene/p.
In IPDPS, pages 1–11, 2010.

https://networkrepository.com/3D-spatial-network.php
https://networkrepository.com/3D-spatial-network.php
https://shapenet.org/
https://figshare.com/articles/dataset/Porto_taxi_trajectories/12302165
https://figshare.com/articles/dataset/Porto_taxi_trajectories/12302165
https://www.hackster.io/flyingfox/flyingfox-821a16
https://www.oppo.com/en/smartphones/series-reno/reno11/
https://www.oppo.com/en/smartphones/series-reno/reno11/
https://github.com/notNNORTH/Dask-means-cpp
https://github.com/notNNORTH/Dask-means-cpp
https://malmaud.github.io/tfdocs/shape_inference/
https://malmaud.github.io/tfdocs/shape_inference/

[57] J. Tuero and M. Buro. Bayes distnet - A robust neural network for
algorithm runtime distribution predictions. In AAAI, pages 12418–
12426, 2021.

[58] I. Verbauwhede, C. J. Scheers, and J. M. Rabaey. Memory estimation
for high level synthesis. In DAC, pages 143–148, 1994.

[59] C. Wang, L. Gong, F. Jia, and X. Zhou. An FPGA based accelerator for
clustering algorithms with custom instructions. IEEE Trans. Computers,
70(5):725–732, 2021.

[60] S. Wang, Z. Bao, J. S. Culpepper, and G. Cong. A survey on
trajectory data management, analytics, and learning. ACM Comput.
Surv., 54(2):39:1–39:36, 2022.

[61] S. Wang, Y. Sun, and Z. Bao. On the Efficiency of K-Means Clustering:
Evaluation, Optimization, and Algorithm Selection. PVLDB, 14(2):163–
176, 2021.

[62] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal,
B. Pan, R. Kumar, A. Hartnett, J. K. Pontes, D. Ramanan, P. Carr,
and J. Hays. Argoverse 2: Next generation datasets for self-driving
perception and forecasting. CoRR, abs/2301.00493, 2023.

[63] M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. G. Lopes,
A. S. Morcos, H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith,
and L. Schmidt. Model soups: averaging weights of multiple fine-tuned
models improves accuracy without increasing inference time. In ICML,
volume 162, pages 23965–23998, 2022.

[64] S. Xia, D. Peng, D. Meng, C. Zhang, G. Wang, E. Giem, W. Wei, and
Z. Chen. A Fast Adaptive k-means with No Bounds. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 1–1, 2020.

[65] X. Xu and G. Hee Lee. Weakly Supervised Semantic Point Cloud
Segmentation: Towards 10x Fewer Labels. In CVPR, pages 13706–
13715, 2020.

[66] X. Yin, Y. Sasaki, W. Wang, and K. Shimizu. 3D Object Detection
Method Based on YOLO and K-Means for Image and Point Clouds.
Technical report, 2020.

[67] T. Yu, W. Zhao, P. Liu, V. Janjic, X. Yan, S. Wang, H. Fu, G. Yang, and
J. Thomson. Large-scale automatic k-means clustering for heterogeneous
many-core supercomputer. IEEE Trans. Parallel Distributed Syst.,
31(5):997–1008, 2020.

[68] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang.
T-drive: Driving directions based on taxi trajectories. In GIS, pages
99–108, 2010.

VIII. APPENDIX

A. Complexity Analysis

We analyze the time complexity of the proposed pruning
mechanism. We first analyze the construction time and search
time on different types of indexes (using Ball-tree structures).
A balanced Ball-tree containing n spatial vectors has a height
of ⌈log2 2n

f ⌉ when each leaf node contains f
2 spatial vectors.

Assume that the dataset consists of d-dimensional spatial
vector. Then the construction time of a balanced Ball-tree is
O(dn log2

2n
f) [47] and the kNN search on a balanced Ball-

tree costs O(d(log2
2n
f + f)) time, which is the best case. On

the other hand, for a degenerate Ball-tree with height n − f ,
the construction time is O(dn2) and the complexity of kNN
search can be as high as O(dn) in the worst case.

In each iteration of the clustering algorithm, it takes
O(dk log2

2k
f) ∼ O(dk2) time to create a Ball-tree on C.

Then, in lines 5-7, the computation of the inter bound for
each centroid costs O(dk(log2

2k
f + f)) ∼ O(dk2) time.

The Assign function, in the worst case, needs to scan the
whole Ball-tree on D and this process costs O(dn(log2

2k
f +

f)) ∼ O(dnk) time. Lastly, it takes O(k) time to refine
centroids. Thus, the total time complexity of Dask-means
is O(d(n+ 2k) log2

2k
f + d(n+ k)f) ∼ O(d(n+ 2k)k).

Note that the total runtime is related to the iteration number
of k-means. However, the above time complexity for each
iteration is just theoretical analysis, and calculating the total
runtime is still challenging, as it is not clear when k-means
tasks converge. Next, we will design a cost estimator to predict
the memory cost and the runtime accurately for k-means tasks.

B. Additional Comparisons with SOTAs

As shown in Fig. 12, we evaluate the efficiency of
Dask-means by comparing its per-iteration runtime with
other SOTA k-means algorithms.
Observations. (1) Dask-means achieves the best per-
iteration acceleration in most cases when k takes on different
values. However, when k is not large, such as k = 103,
as shown in Porto in Fig. 12(b), Dask-means is slower
than NoBound, Hamerly, and Dual-tree. This is because
Dask-means incurs additional time due to constructing two
extra indexes, while its pruning power is less effective. More-
over, we observe that NoBound does not accelerate Lloyd’s
algorithm and is even slower when k is small, as shown in
T-drive in Fig. 12(b). (2) When k is relatively large, such as
k = 104, the per-iteration runtime stabilizes after the first five
rounds. (3) The per-iteration runtime of Hamerly remains
consistent, indicating that the pruning power from assigning
each point upper and lower bounds remains stable.

C. Parameter Selection for Our Cost Model

We test different β (see Section V-B1) values within the
range (1, 6) and various σ values (see Section V-B2) within the
range (1, 100) to determine the suitable β and σ. Moreover,
we verify whether the interaction features can improve the
prediction accuracy of the runtime prediction method.

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

T-drive

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

Porto

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

Argo-AVL

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

Argo-PC

0 10 20
Iterations

100

101

Ru
nt

im
e

(s
)

3D-RD

0 10 20
Iterations

101

Ru
nt

im
e

(s
)

Shapenet

(a) Runtime of each k-means algorithm (k = 102).

Lloyd's Algorithm
NoBound

Dual-tree
Hamerly

Yinyang
Dask-means

0 10 20
Iterations

100

101

102

Ru
nt

im
e

(s
)

T-drive

0 10 20
Iterations

100

101

102

Ru
nt

im
e

(s
)

Porto

0 10 20
Iterations

100

101

102

Ru
nt

im
e

(s
)

Argo-AVL

0 10 20
Iterations

100

101

102

Ru
nt

im
e

(s
)

Argo-PC

0 10 20
Iterations

100

101

102

Ru
nt

im
e

(s
)

3D-RD

0 10 20
Iterations

101

102

Ru
nt

im
e

(s
)

Shapenet

(b) Runtime of each k-means algorithm (k = 103).

Lloyd's Algorithm
NoBound

Dual-tree
Hamerly

Yinyang
Dask-means

0 10 20
Iterations

101

102

103

Ru
nt

im
e

(s
)

T-drive

0 10 20
Iterations

101

102

103

Ru
nt

im
e

(s
)

Porto

0 10 20
Iterations

101

102

103

Ru
nt

im
e

(s
)

Argo-AVL

0 10 20
Iterations

101

102

103

Ru
nt

im
e

(s
)

Argo-PC

0 10 20
Iterations

101

102

103

Ru
nt

im
e

(s
)

3D-RD

0 10 20
Iterations

101

102

103

Ru
nt

im
e

(s
)

Shapenet

(c) Runtime of each k-means algorithm (k = 104).

Lloyd's Algorithm
NoBound

Dual-tree
Hamerly

Yinyang
Dask-means

Fig. 12. The runtime performance of k-means algorithms in each iteration.

TABLE VIII
THE IMPACT OF THE INTERACTION FEATURES AND β .

Degree
Basic Feature Interaction Feature

MSE MAE WMAPE sMAPE MSE MAE WMAPE sMAPE

β = 1 600.48 18.44 0.41 62.15 525.33 17.39 0.39 59.06
β = 2 245.62 12.12 0.27 37.79 229.01 10.52 0.23 37.44
β = 3 324.07 11.26 0.25 31.52 264.76 10.01 0.22 35.72
β = 4 324.68 11.29 0.25 28.78 227.47 9.44 0.21 25.72
β = 5 335.36 12.07 0.27 34.04 232.52 10.75 0.24 36.90
β = 6 383.38 13.70 0.30 40.51 1167.00 13.66 0.30 39.20

Observations. (1) As shown in Table VIII, the four evaluation
metrics decrease as β increases, reaching their minimum at
β = 4. Beyond this point, the metrics increase as β continues
to grow. Hence β = 4 is a suitable choice. Moreover, adding
the interaction features improves the cost estimator’s predic-
tion accuracy. (2) As shown in Fig. 13, when σ = 50, our
method reaches its strongest adjustment capability. However,
if σ is poorly chosen, the values of the four metrics become
large. For example, σ = 2 assumes a weak correlation between

2 4 6 8 10
Iterations

(a) MSE of Each Model

10 2

10 1

M
SE

2 4 6 8 10
Iterations

(b) MAE of Each Model

10 1

M
AE

2 4 6 8 10
Iterations

(c) WMAPE of Each Model

101W
M

AP
E

2 4 6 8 10
Iterations

(d) sMAPE of Each Model

10 1

sM
AP

E

= 1 = 2 = 5 = 10 = 50 = 100

Fig. 13. The impact of α in adjusting the runtime.

2 4 6 8 10
Iterations

 (a) MSE of Each Method

10 1

100

Ru
nn

in
g

Ti
m

e
(S

)

2 4 6 8 10
Iterations

 (b) MAE of Each Method

10 1

100

Ru
nn

in
g

Ti
m

e
(S

)

2 4 6 8 10
Iterations

 (c) WMAPE of Each Method

10 1

Ru
nn

in
g

Ti
m

e
(S

)

2 4 6 8 10
Iterations

 (d) sMAPE of Each Method

101Ru
nn

in
g

Ti
m

e
(S

)

S-XGBoost S-DistNet S-AutoML NoGP Dask-means

Fig. 14. The performance of our cost estimator in adjusting predicted runtime.

iterations, which is unrealistic. For example, once the final
centroids are found and k-means is completed, there are no
further iterations (the runtime for the next iteration is 0).
Moreover, as runtime progresses, we find that the MSE, MAE,
WMAPE, and sMAPE decrease at a roughly constant rate,
indicating that adjusting σ has less impact as the k-means
tasks approach convergence.

D. Verification for Predicted Runtime Adjustment

We verify that using the proposed cost estimator can adjust
the runtime dynamically based on the posterior information
they acquired from the current iteration. The calculation
of metrics is obtained by comparing the predicted runtime
with the actual runtime for each specified iteration. Notably,
Dask-means without applying GP is referred to as NoGP.
Observations. As shown in Fig. 14, compared to other SOTA
methods, our cost estimator performs best across four metrics.
Moreover, our cost estimator effectively corrects predicted
runtime compared to NoGP. Furthermore, as k-means runs
longer (with more iterations), more posterior information is
obtained, improving the ability to adjust prediction times.

TABLE IX
INFORMATION OF SMARTPHONE.

Attribute Specification

Model OPPO Reno11 5G
Dimensions 74.3× 162.4× 7.99 mm

Weight 182g
SoC MediaTek Dimensity 7050 (MT6877V)
CPU 8-core ARM Cortex-A78/A55 (2.6/2.0 GHz)
GPU ARM Mali-G68 MC4, 950 MHz, Cores: 4
RAM 12 GB, 2133 MHz

Storage 256 GB
Display 6.7 in, OLED, 1080 x 2412 pixels, 30 bit
Battery 55000mAh/19.45Wh

Fast Charge SUPERVOOCTM 67W and SUPERVOOCTM 2.0
Biometrics Fingerprint and Facial Recognition

OS ColorOS 14 (Android 14)
Camera 9280 × 6920 pixels, 3840 × 2160 pixels, 30 fps

SIM card Nano-SlM
USB 2.0, USB Type-C

Bluetooth 5.3
Positioning GPS, A-GPS, GLONASS, BeiDou, Galileo, QZss

Fig. 15. Running k-means algorithms on the smartphone.

	Introduction
	Background and Preliminaries
	Notations
	Definition of k-means
	Accelerated Lloyd's Algorithms for k-means
	Cost Estimator

	Framework of Dask-means
	Memory-efficient Accelerator
	Pruning Mechanisms
	Algorithm Design

	Lightweight Cost Estimator
	Memory Cost Estimation
	Runtime Prediction
	Non-Linear Regressor
	Runtime Adjustment with GP

	Experiments
	Experimental Settings
	Efficiency of Proposed Accelerator
	Evaluation of Our Cost Estimator

	Conclusions
	References
	Appendix
	Complexity Analysis
	Additional Comparisons with SOTAs
	Parameter Selection for Our Cost Model
	Verification for Predicted Runtime Adjustment

