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Intelligent Edu & SCI:
Background and Challenges



1. Intelligent Edu & SCI: Bac und and Challenges

What is going on in universities?

* Education

* Online Learning

* Open University

* Personalization-driven
* Research

. Al4S

* Computation-intensive

* Data-intensive
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1. Intelligent Edu & SCI: Background and Challenges

5 paradigms of science:
empirical, theoretical, computational, data-intensive, and Al-driven

* Microsoft researcher Jim Gray described the evolution of scientific paradigms:

James Nicholas Gray
(1944 - declared dead in
absentia 2012) was an

eox
American computer propartoning
scientist who received the Fourth Paradigm
Turing A d in 1998 “fi Data-driven
uring Award in or Q's Third Paradigm sclence

seminal contributions to :9 Computational Fatpat

- ’ ! ata mining
database and transaction Processing Second Paradigm science

artificial intelligence

Theoretical machine learning

processing research and science

technical leadership in
system implementation”.

Density-functional
theory, molecular
dynamics simulation

First Paradigm
Empirical
science

Laws of kinetics
thermodynamics

mechanics
Trial-and-error

experiments

s loannidis, Yannis. "The 5th paradigm: Al-driven scientific discovery." Communications of the ACM 67.12 (2024): 5-5.
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1. Intelligent Edu & SCI: Background and Challenges

Digital education is empowered by Al

* Education Modernization 2035

* This blueprint emphasizes using technology like Al, big data, and VR to create Eﬂesmﬁgi!?ﬂrgﬁg
2025 WORLD DIGITAL EDUCATION CONFERENCE
a modern, flexible, and lifelong education system.

SE: DMK
* National Smart Education Platform: A free public platform providing

curricular resources for students from primary to high school, professional
development for teachers, and services for vocational and higher education.
* Wuhan University’s Digital Intelligent Education
« "Student-Centered, Data-Driven, Al-Enabled"
» Seamless integration of technology into teaching, research, and campus life.

* Aligns with national strategies.

Zhang, Pingwen. "Digital Intelligence Education at Wuhan University: Practice and Innovation." Frontiers of Digital Education 2.1 (2025): 1.
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1. Intelligent Edu & SCI: Background and Challenges

Scientific discovery is empowered by Al
* Deep Research
* Accelerating and Augmenting Human Intelligence

* Generating and Prioritizing Hypotheses

* Autonomous Design and Execution of Experiments Deep Resea rCh

* Modeling and Simulation of Complex Systems

* Real-World Examples:

* Medicine: Al is used to discover new antibiotics (like halicin, discovered by an MIT Al model), design personalized

cancer treatments by analyzing a patient's tumor, and predict pandemic spread.

* Physics: At the Large Hadron Collider (LHC), Al algorithms sift through petabytes of collision data to find the

incredibly rare events that might indicate new physics.

* Materials Science: Al is used to discover new alloys, superconductors, and battery components with specific desired

s properties.
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1. Intelligent Edu & SCI: Background and Challenges

Data-centricity represents the fundamental commonality

MOOC CUBE

Student data cell
/ -_f"

 concent ‘

Application Table

* 3V of big data
* Volume
* Velocity
* Variety

Application Name | _Entities

P

Video Smart Jump

MOOC Recommendation

Course Concept Extraction| .,

Prerequisite Learning

Complex MOOC Q&A

* MoocCube Dataset

More Applications ... —.@':

* With over 1.2 billion behavioral events, it was one of the largest public MOOC
datasets of its time, enabling robust and generalizable machine learning model

training.

* OpenAlex Dataset

* A massive, open-source bibliographic database that aims to catalog the world's
scholarly research and the connections between its entities: works, authors,

institutions, concepts, and sources.

* 240 million works, 210 million authors, and 120,000 concepts, 2-3 million research

s papers annually
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1. Intelligent Edu & SCI: Background and Challenges

What mainly varies are the data models

Relational Model - Traditional table-based structure with rows

and columns

Document Model - Stores semi-structured data in JSON, XML, or
BSON formats

Graph Model - Represents data as nodes and edges for complex

relationships

Key-Value Model - Simple key-value pairs for fast retrieval

Vector Model - The most popular one in the LLM Era
* Captures Meaning and Relationships (Semantics)
* Enables the Core LLM Architecture (Transformers)

« Unifies Different Types of Data (Multi-Modality)
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1. Intelligent Edu & SCI: Bac und and Challenges

Key tasks in intelligent education & research: 3S

« Data Summarization

200Mm

BREAKOUT ROOMS

* Student grouping

* Literature review

« Data Search

* Scientific Dataset Preparation Google Dataset Search...

« Scientific Talent Seeking

* Data System

N

Granee Qe G s
* Google Scholar oursera
* Google Dataset Search Bhn b WBER efe
& Google Scholar
s e Coursera https://www.icourse163.org/ https://www.coursera.org/
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1. Intelligent Edu & SCI: Background and Challenges

Challenge 1: Cross-model data summarization

* Clustering on vector data to divide data points into groups.

* K-means
* K-center
L]
Ideal Clustering
8 .s . K
... 3 s .*d":;.: .
¢ v R
PRSI A 2 o LN
4 RN .
. o'
2 3
.‘t-'.s'. .,
0 .8 o’
g 303 .
21 % e tfhe el
-4
-4 -2 0 2 4 6 8 10

What happens with multi-model data?

@ @ ' C2 Machine learning
Reinforcement ¥

Neural network

. leammg@ _' he : Z

Q-learning

Database syvtem'

Query

optimization\/ -

Join order N
DNN

optimization Query performance @
predzctmn (QPP)
......................................... [E—
Learn Watch Cllck Contam Prerequisite
Users D Courses <>V1deos AKnowledge concepts

Zhang, Juntao, Sheng Wang, Yuan Sun, and Zhiyong Peng. “Prerequisite-Driven Fair Clustering on Heterogeneous

Information Networks.” Proceedings of the ACM on Management of Data 1, no. 2 (2023):

heng Wang
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1. Intelligent Edu & SCI: Background and Challenges

Challenge 2: Cross-silo search over data islands

* A data island is an isolated or disconnected store of data within an organization that is

not easily accessible to other departments or systems.

Island 2
Data owl: sameIndividualAs
Island 1 e
£
) «: asparentof — : =
< \MyScE uL | ont: 15BS%
3 —— d) o) N

-*"COORDINATOR *~

Island 4
Istand 3

SILO B
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1. Intelligent Edu & SCI: Background and Challenges

Challenge 3: Cross-disciplinary global research system

* Existing systems exhibit domain specificity owing to inadequate big data

processing capabilities.

Sustainability
sciences

Biologi
scienc

Sheng Wang
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Multi-model Database System:
A Solid Cornerstone for IE&IR



2. Multi-model Database System: A Solid Cornerstone for IE&IR

What is the multi-model database system?

* Definition:
* A multi-model database (MMDB) is a database management system designed to support
multiple data models against a single, integrated backend.
* Main feature:

* Instead of using separate databases for different types of data, a multi-model database can

handle various data formats within one unified system.

=

Multi-model DB

Visualizations | Applications

BigDAWG Polystore Common Interface

JIniyic Analytic’ i’
Translator}

Spati <—>
i Data D
T Translator lator \

s JSON saL NosaL NewSQL
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2. Multi-model Database System: A Solid Cornerstone for IE&IR

Why is multi-model database system crucial?

* Simplified Architecture
* No need to manage multiple databases
* Reduced operational complexity
* Single system to learn and maintain

* Improved Performance

* Optimized storage and retrieval for each data model
 Faster queries by leveraging appropriate models

* Unified query language across models
* Increased Flexibility

¢ Handles structured, semi-structured, and unstructured data
* Adapts to changing business requirements
* Supports diverse data formats without reformatting

* Cost Efficiency
* Reduces infrastructure costs

* Lower development and maintenance overhead
* Eliminates data duplication across multiple systems

heng Wang BRI N T

Multi-Model DBs for Intelligent Edu & Sci

Michael Stonebraker

One size does not fit all

2014 Turing Award Winner for his
contributions to database research
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2. Multi-model Database System: A Solid Cornerstone for IE&IR

Existing MMDBs: Open-source vs. Oracle

¢ Popular multi-model databases include:

ArangoDB - Supports documents, graphs, and key-value Unifed Engine
airs and Guerios

« Single Source of Truth

« Developer Knowledge

« Less Maintenance

Azure Cosmos DB - Supports multiple models via
different APIs

« Faster Performance

Grapn L
and Analytcs Full-Text
e Heratve
Groph
Processing

* Couchbase - Key-value and JSON documents

¢ Redis - Key-value with extensions for other models

Blockchain tables

Native Binary JSON.

* OrientDB - Graphs, documents, and key-values \

= @ -In-Memory analytics
s — A
* Oracle 26Al =
Graph
=

* Al-native functionality Spanal//'mg/

* Multi-modal and multi-cloud data processing iiDitabEsE Machine Uearnia .\\gnesr Data Services

* Performance and security enhancements Text Data—

External Data

XML ——
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2. Multi-model Database System: A Solid Cornerstone for IE&IR

Shortcomings

* Cross-model analysis operator is not supported
* Systems like DuckDB only have plugin-based multi-model support

* ArangoDB, AgensGraph simply transform multiple models into their first-model

* None of these systems designed cross-model analysis operators

* Cross-silo distributed data search is not supported
* Heterogeneous data formats and query languages

* Absence of federated metadata and global optimization
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2. Multi-model Database System: A Solid Cornerstone for IE&IR

Framework of our newly developed GredoDB

Our multi-model database works by:

Input: GCQs or analytical tasks Output: unified query/analysis results
. . . MMSQL § Query tree Query plan T
* Unified Storage: All data stored in a single Puser  ES—  Optinizer  m—  Brecutor
(c) Unified Query Processing Engine
. Operator invoking | Query results Operator invoking_ 4 Analysis results
representation
Hybrid traversal Shortest-path Matrix generation
Pattern matching Cross-model join Linear algebra
» Easy-to-use Query Language: One language to (b) Scalable Operator Library
GraphAM RecordAM { [ Write Read 1 | Write
access all data models Graph cache = Rowbufferpool --> Inter-buffer Memory
Deserialization TlSen.\]]z.\uon I Read l BgWriter
* Global Optimization: Engine optimizes storage R s [ e [
. (a) Dual Storage Engine
and retrieval based on data model Jr—
Novel designs Extended from RDBMS  mmmp Query workflow
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model Database System: A Solid Cornerstone for IE&IR

Unified Storage Engine for data variety

* Unified Data Modeling in the dual storage engine.

Graph cache = Rowbufferpool -->

Products Customers i

]| sittar | prical]) 1] )] personid ] mame | |

oo 56| [oT 2 Thec] |

1] Yo | w9 | [T o0 | beb ||

Inter-buffer Memory 2 | tgniter | 09 2 T oo ] |

alization

Deserialization 'I‘l\

Serialized adjacency graphand mappers

‘|‘ Read

(a) Dual Storage Engine

Data in unified relational model

Relation Model

"data” [120,130,111] }

Source nodes

Graph Topology

heng Wang

Wouhan University http://shen,

55, "images™ ...}

Document Model

Labet: ()

o TR}
abet 00 it [prope] [som o] o | wiaprops
Labet {U) oid: 00 0) (E— %0 [0 [0 o] -

abek: (W) 00
Label/{U} i Lprors 00 {00 ] 011 00
ol 00 [ 01] o100
el g
wf 01 L. @
[ u Soral ] rid | i prons
Label: xy  Labek: @ “ 01 [0 [0z 0]

(a) Graph data (b) Vertex tables

Graph Model

(c) Edge tables

Multi-Model DBs for Intelligent Edu & Sci 2025-11-8QIEIR-CCNU 18 / 43



http://sheng.whu.edu.cn/

2. Multi-model Database System: A Solid Cornerstone for IE&IR

Cross-model Query Optimizations for data volume

* Cross-model Query Optimization refers to the process of optimizing queries that
span multiple data models (such as relational, graph, vector, and document data)

within a multi-model database system.

[togical Plan for Graph Query[_|Pushdown Rules for Tables Joined with Graph

Join
(with filters @)

SeqScan
[ SubqueryScan ] { (with filters @) } pushdown

Predicate-level pushdown (on Graph oin
@ pushdown (on Graph)

(b)

Optimization rules: @

(2) Topology checking with optimized operator [eraphTraverse ==
(with filters @) (with filters @)
(3) Predicate-level pushdown (on Table) [ Subguery- }[ Subguery- ][ Subquery- ] Join ]
H Scan Scan Scan i (with filters @)
©); £3 Z :
. i Vertexs Egdes VertexS: i SeqS
@) Collection-level pushdown (e e | e ) o )
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2. Multi-model Database System: A Solid Cornerstone for IE&IR

Distributed multi-model transaction for data velocity

* Distributed architecture for big data

Read-Write Node Read-Only Node

scenarios SQLEngne Wbt QL Engine

Information

» Data is stored in a shared storage

» Data processing adopts a distributed TCP/RDMA

architecture

Data Pages :
* Transaction management based on _
DSS API DSS API
network protocols
* Coherent cache across nodes, Shared Storage

orchestrated by distributed memory

s service (DMS) @
heng Wang BRI T Y, Multi-Model DBs for Intelligent Edu & Sci 2025-11-8QIEIR-CCNU 20 / 43
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2. Multi-model Database System: A Solid Cornerstone for IE&IR

MMSQL: A novel query language for end users

* High usability and user-friendly

* MMSQL is backward-compatible with SQL
* Supports parts of the SQL/JISON and SQL/PGQ standards

* Multi-model support
* Supports multiple models, including relational, document, graph, and vector

subquery2, ..] ]

[ WITH name1 AS subquery1 [, name2 AS.
SELECT [ DISTINCT ] select list
[ FROM [ relation [AS alias]
| document [AS alias] [ UNWIND unnest_fun(col name) [AS alias] [UNWIND....]
| oraph MATCH pattern
| vector [AS alias] ]

[ 30INmodel [ON join condition [, ...] ]
] UNWIND unnest fun(col name) [AS lias] [ UNWIND ...]

161

1
[ WHERE query condition |
[ GROUP BY group by condition ]
[ HAVING group condition ]
L ORDERBY [ scalar [, ASC | DESC] ] ] . g id = avec.id -- condition of multi-nodel join
[ LIMIT limit_number ] ittis ¢ ke

order by t.vec <-> a_vec.vec asc

Limit 100

Sheng €WETYd  \Wuhan University http://sheng.whu.edu.cn/ Multi-Model DBs for Intelligent Edu & Sci
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and p.fos.name = Gfos_name and keyword: :varchar = Ekeyword
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Clustering-based Data
Summarization




3. Clustering-based Data Summarization

Why clustering for data summarization?

* Clustering is a powerful technique for data summarization because it organizes large
volumes of data into meaningful groups, making complex information more manageable

and interpretable.

0203040508 0 B 0s - o~ v e e & =

Gt

Hierarchical clustering Partition-based Density-based

Sheng Wang, Yuan Sun, Zhifeng Bao. On the Efficiency of K-Means Clustering: Evaluation, Optimization, and Algorithm Selection. PVLDB 2021
s 14(2): 163 - 175,
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3. Clustering-based Data Summarization

Existing clustering models and broader applications

* The k-means algorithm partitions data into clusters with similar characteristics,
enabling efficient analysis, compression, and downstream learning.

Possible objective:  This is the sum of squared errors for each data point Xis
Z Z(Xi —u assuming that each X; is mapped to the closest cluster center p,.
Cy x;eCy

VF FLAT

BEEEE

Spatial clustering Point cloud clustering

Yushuai Ji, Zepeng Liu, Sheng Wang, Yuan Sun, Zhiyong Peng.
s Efficient. and Cost-Predictable k-means. ICDE. nn.863-876. 2025.
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3. Clustering-based Data Summarization

Common shortcomings

* Small clusters and large clusters

® e ; @
(3 o e Balancgd % ® C|a55|c?l ° OO‘:’
oe® ©e Tclustering 8 o) @ @ clustering o oe

* Vector-oriented only
* One typical example is semantic grouping of students’ open-ended answers.

Unbalanced Clustering

Student Answers Balanced Clustering

Example:
. : Group 1: A, B (strong) Group 1: A, B, D, E
A: Parabola has highest/lowest point Group 2: D, E (partial) Group 2: C alone
B: Quadratic has extremum Group 3: C (needs support)
C: | just follow textbook P R Problems:
. Dclusx'e“t’)":nt‘;i _a;'fu';”‘ge’teofﬂt Outcome: Equitable group sizes, - One isolated learner
+ 9 p scalable instruction - One giant group

- Hard to differentiate instruction
* Balanced clustering groups students into similarly sized clusters while preserving semantic
similarity, ensuring no student is isolated and teaching remains scalable and fair.
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3. Clustering-based Data Summarization

Balanced clustering to generate equal-size clusters

* Our method
* Loss function: Total loss(G) = Clustering loss(G) + Penalty Term(G)
* Design a new indicator matrix with rows for classes and columns for points, as shown in Figure (a)

« Select the optimal indicator matrices {G, G2, ..., G*} to minimize the loss, as shown in Figure (b).

v N v v \ 4

o 1]o0 Each O 1 O 1 O 1 O
Column

0O o0]1 © has only o 1 o 1 o 1
one “1”

1 ofo (Point) o o 0o 0 o o 0 o

A . (1) . &) ; [©]
Rows Represent Clusters Candidate G; * Candidate G; Candidate G;

(a) A3 x3indicator matrix G (b) Candidates of G,

Yushuai Ji, Shengkun Zhu, Shixun Huang, Zepeng Liu, Sheng Wang, Zhiyong Peng. Federated and Balanced Clustering for

High-dimensional Data. PVLDB, 18(11): pp.4032-4044, 2025.
heng Wang Multi-Model DBs for Intelligent Edu & Sci 2025-11-8@IEIR-CCNU 25 / 43
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3. Clustering-based Data Summarization

Cross-model clustering in HINs for fair student grouping

* We further achieve balanced clustering in Heterogeneous Information Network (HIN)

2]

=

g

3

'

£

(<)

:;T'

o

=}

=1

E,

5
aysmboord

Personalized learning path of user U by watching video

V and clicking on knowledge K
Balance the ratio of

male and female

(—Aw2) () ()
« \/7 S N e
(w—@) () Supportdynamic

()
updates

Dividing 8 students into two groups structural constraints for meta-paths ~ structural constraints for prerequisite meta-paths

SIGMOD 2023

Juntao Zhang, Sheng Wang, Yuan Sun, Zhiyong Peng: Prerequisite-driven Fair Clustering on Heterogeneous Information Networks.
Sheng €WETYd  \Wuhan University http://sheng.whu.edu.cn/ Multi-Model DBs for Intelligent Edu & Sci 2025-11-8@IEIR-CCNU 26 / 43



http://sheng.whu.edu.cn/

Connectivity-aware Spatial
Dataset Search




4. Connectivity-aware Spatial Dataset Search

What is cross-silo dataset search and preparation?

* 90% time is spent on preparing datasets

kaggle Dat Google " VisualData

aset Search...
2 um J [""I] g‘:";;OpenML ::_I;
= NATA HealthData.gov m

Google Dataset Search...

* Data can be stored in distributed systems such as:

(Big) Dita

* University library

* Open government \_‘
Private sector I'I

* Private owner e
.'/f

* Data markets
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4. Connectivity-aware Spatial Dataset Search

Existing systems for dataset search and preparation

* Keyword-based search still dominates Dataverse®

Open source research data repository software

A7) ¥ mumnsETs

Peking University Open Research Data

Q
* Semantic

User Intent
Relevant Content

Search
Dataset Search

Higher Rankings loganix

[1] https://dataverse.org/ )

[2] htips://or pkuedu.cn/ Auctus Dataset Search
[3] http arch.research.google.com/

[4] https://auctus.vida-nyu.org/
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4. Connectivity-aware Spatial Dataset Search

Spatial dataset search by a given exemplar dataset

* A user has a small dataset on hand and expects to find relevant dataset to
augment :
* Q: the input query dataset

* E.g., which is the most similar dataset to Q among D,, D, ..., Ds?

H Candidates |:|
=>

D1 D2/\ D3
D4 D5 1oz ]
Q sort by TICT bound
(a) original datasets (b) data modeling (c) construct index (d) coarse-grained filtering (e) fine-grained filtering

s Wenzhe Yang, Sheng Wang, Yuan Sun, Zhiyong Peng: Fast Dataset Search with Earth Mover's Distance. Proc. VLDB Endow. 15(11): 2517-2529 (2022)

heng Wang Wuhan University http://sheng.whu.edu.cn/ Multi-Model DBs for Intelligent Edu & Sci 2025-11-8QIEIR-CCNU 29 / 43


http://sheng.whu.edu.cn/

4. Connectivity-aware Spatial Dataset Search

Cross-silo dataset search without leaking original datasets

* When the datasets are from multi sources i Sendingquery  Data conter :
Returning k Constructing global |
: 5 - User results index (DITS-G) |
- b |
g T 275 Dy bq 37 .SDA Root node Query Results
s R T ) Dy 0 S b uploading Allocating uploading
8 st S o7 - : D
4 2 bl local /N = local '
e 2 : index ﬁ index 1
i e iy A\
a) Query dataset  (b) Overlap joinable search (c) Coverage joinable search i
(2) Query (b) P (© ge j DITS-L) oITSL)!
Source 1 D, | Ny | Globalindexin data center
Source 2 ‘
e / N Local inde; A
= s o) | e ino
— 1 2 3
= \5 . 1D [Posting list
D, Nicaft 1\71”.;2 ‘Mm/ﬂ Nucass| (Nieafs Nmyj. _,[0] Dy
Dy ) D)0y (D)0y) (D9Dy) [ Ds Dy | (D901 "2/ by Dy
= \__ [Source 1 Source 2 Source 3 23] Dy
(a) Data source (b) Top-down construction (c) Index structure

Wenzhe Yang, Sheng Wang, Yuan Sun, Zhiyu Chen, Zhiyong Peng: Joinable Search over Multi-source Spatial Datasets: Overlap, Coverage, and
Efficiency. ICDE 2025. (CCF A)

heng Wang BRI
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4. Connectivity-aware Spatial Dataset Search

Connectivity-aware for dataset preparation

* Not just similar, but should be also connected and cover more space

* Coverage: maximize the area that the newly formed datasets cover

"B Spatial data marketplace " Spatial data marketplace

* Connectivity: the searched datasets should be linked to each other

& Spatial data marketplace
E
Trajectory | aTrajectory | * Trajectory collection
Trajectory 2 @ Trajectory 2 Trajectory 5
Trajectory 3 @Trajectory 3 Trajectory 8
Trajectory 11
neEEm L LLL ]
Lvisulization

1 visualization

1 visualization @

(©

[ =

(a) Individual recommendation (b) Random acquisition

() Collection recommendation @ (©

(0]
Wenzhe YANG, Shixun HUANG, Sheng WANG, Zhiyong PENG. Budgeted spatial data acquisition: when coverage and connectivity
matter. Front. Comput. Sci., 2026, 20(3):
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4. Connectivity-aware Spatial Dataset Search

Spadas: a demo of spatial dataset search and preparation

* 80% datasets have

geographic information

* Key functions

* Range query

o xE . )

* Multiple similarity measures o
* Open dataset search el I Y :
0O BT RBRa TS
* Upload private datasets for Opertonvea
sale

http://sheng.whu.edu.cn/spadas/
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Collaboration-driven Scientific
Data System




5. Collaboration-driven Scient

Cross-disciplinary scientific discovery

* Existing systems
* DBLP, Google scholar
* Keywords-based
* Why vector similarity search?
* Semantic-aware
* Retrieval Augmented Generation (RAG)
* Billion-scale search

* Paper search

* Talent search

Sheng €WETYd  \Wuhan University http://sheng.whu.edu.cn/

oS

Google Scholar

dblp

computer science bibliography

Basic RAG P‘npeliue_

User Query

—
r_ v Top-K Chunks
- : ]
Documerts | | = ) > T | Reperse
—

Step 1: Data Indexing Step 2 Data Retrieval & Generation

- Talent
— Search
— |

2025-11-8QIEIR-CCNU

Search for a paper

Q seare
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5. Collaboration-driven Scientific Data System

Vector Similarity Search
Why does Vector Similarity Search Work?
Semantic similarity = geometric closeness in the vector space.

Represent texts as dense vectors.
Retrieve by encoding a query, then finding nearest neighbors in a vector

index. The embeddings of "Boy is walking" and
Toy example (semantic proximity): "Girl is walking" demonstrate higher cosine
. . . cy . . similarity due to thei t
« distance(Boy is walking | Girl is walking) = 0.02 e espondence.

o distance(Boy is walking | | am studying) = 0.34
o distance(Girl is walking | | am studying) = 0.40 1 T o Studging

V4
. . 045 | -012 | 0.567|-0.879 OASS‘I
. o] °

Boy lkin
_Boy is walking

~
N / ™~ o
A ek [ i ~
. o ’/;‘7 // Girl is walking
om Stulfing - S ﬂla——j ~ p | i
-1
Yushuai Ji, Sheng Wang, Zhiyu Chen, Yuan Sun, Zhiyong Peng. Updatable Balanced Index for Fast On-device Search with Auto-selection Model.
ICNE INIA (CrE AN
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5. Collaboration-driven Scien Data System

Lorindex for efficient index routing

Why is indexing necessary for vector search?
Brute-force vector search requires computing similarity with every vector in the database, resulting in
high complexity that becomes prohibitively expensive for large-scale datasets. (Especially literature data)

search scope
* Partition N vectors into K cells via _nprobe = 1
clustering.
* At query time: compute distances to K
centroids; scan only nprobe lists.
* Consequently, only about nprobe/K of the
corpus must be scanned, yielding

significant acceleration.

Yiqi Li, Sheng Wang, Zhiyu Chen, Zhiyong Peng. Efficient Low-Rank Index Routing for High-Dimensional Approximate Nearest Neighbor Search .
s Information Processing and Management. (CCF B)
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5. Collaboration-driven Scientific Data System

Vector Set Search
* Problem: Match researchers by their publication portfolios

* Each scholar publishes multiple papers across different topics

* Query: Find experts whose research profile matches project cholar Profiles Vector Set Database
D[ Vector ]

by Paicaions |
needs : £ '
: S 1 02 03 07 .. !
; L O= 5 @ 2 02 02 o1 :
* Challenge: Scholars cannot be represented by a single vector | 3 § i > | @ §
! ; 1 02 02 05 :
* Why set-level matching? Q= @) 2 02 01 09 i
! 3 02 05 07 !
* Researchers have multi-faceted expertise =~ ==moomoooecoes O o DL P PR SEPRPs
\ Vector Set Search
* Research evolution over time reflected in paper collections Vector Set | | . Compute Distance
Database J | Pairwise Distance Aggregation
. . I : ) 203
* Single-vector aggregation loses topic diversity and depth iVee. 12 3 Ve |
& Beree P vand dep [CompueSetDsance J: = 10 3143 = - - -
signals Get Top-k Scholars ”42 3 0 20 ______ N 30'

Yiqi Li, Sheng Wang, Zhiyu Chen, Shangfeng Chen, Zhiyong Peng: Approximate Vector Set Search: A Bio-Inspired Approach for High-Dimensional
Spaces. ICDE 2025. (CCF A)
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5. Collaboration-driven Scientific Data System

Stotra: a demo for global scientific discovery

End to end technology-theme trajectory capabilities for intelligence centers, S&T platforms, industry
institutes, and university research offices: algorithms, data governance, sharing, intelligent retrieval and
recommendation, analytics, and reporting. Vector search plays an important role.
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What’s novel and next in
MMDB for IE&IR?



6. What's novel and next in MMDB for IE&IR?

Multi-model Database for IE&IR: 3Vs, 3S and 3C

* 3Vs * 3Ss * 3Cs
* Variety * Summarization ¢ Clustering
* Volume * Search * Connectivity
* Velocity ¢ System * Collaboration

o
Q Gyl v 2

s

NETWORY

Data User Algorithm
Sheng Wang
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6. What's novel and next in MMDB for IE&IR?

What is next for MMDB to be more applicable to IE&IR?

* Future

* The Convergence of Education and Research: Research-Informed Teaching, Teaching-Informed Research

* "Integration of science & technology, education, and talent"

* Fairness

* Algorithmic Bias: Al systems can perpetuate and amplify existing biases in curricula and assessment if not

carefully designed and audited.
« Digital Divide: Equitable access to technology and fair algorithms are crucial to prevent a new form of inequality
* Federated

* Data Privacy & Ethics: Using student data for analytics (Learning Analytics) must be balanced with strong privacy

protections and ethical guidelines.
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