Powering the Future: How Multi-Model Databases Empower Intelligent Education & Scientific Discovery?

Sheng Wang

Email: swangcs@whu.edu.cn http://sheng.whu.edu.cn/

Totem Database Lab

2025-11-8@IEIR-CCNU

Wuhan University

¹School of Computer Science

²School of Artificial Intelligence

³Research Center for Digital and Intelligent Teaching and Education

Outline

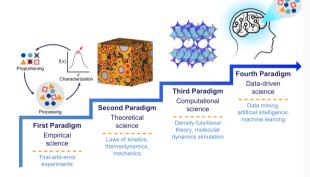
- 1. Intelligent Edu & SCI: Background and Challenges
- 2. Multi-model Database System: A Solid Cornerstone for IE&IR
- 3. Clustering-based Data Summarization
- 4. Connectivity-aware Spatial Dataset Search
- 5. Collaboration-driven Scientific Data System
- 6. What's novel and next in MMDB for IE&IR?

Intelligent Edu & SCI:

Background and Challenges

What is going on in universities?

- Education
 - Online Learning
 - Open University
 - · Personalization-driven
- Research
 - AI4S
 - Computation-intensive
 - · Data-intensive


5 paradigms of science:

empirical, theoretical, computational, data-intensive, and Al-driven

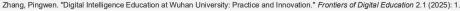
• Microsoft researcher Jim Gray described the evolution of scientific paradigms:

James Nicholas Gray (1944 – declared dead in absentia 2012) was an American computer scientist who received the Turing Award in 1998 "for seminal contributions to database and transaction processing research and technical leadership in system implementation".

Digital education is empowered by AI

Education Modernization 2035

- This blueprint emphasizes using technology like Al, big data, and VR to create
 a modern, flexible, and lifelong education system.
- National Smart Education Platform: A free public platform providing curricular resources for students from primary to high school, professional development for teachers, and services for vocational and higher education.


· Wuhan University's Digital Intelligent Education

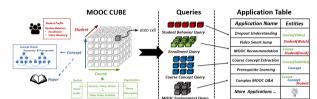
- · "Student-Centered, Data-Driven, AI-Enabled"
- Seamless integration of technology into teaching, research, and campus life.
- · Aligns with national strategies.

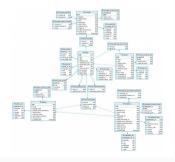
Scientific discovery is empowered by AI

Deep Research

- Accelerating and Augmenting Human Intelligence
- Generating and Prioritizing Hypotheses
- Autonomous Design and Execution of Experiments
- Modeling and Simulation of Complex Systems

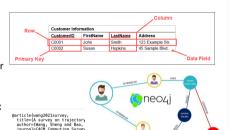
Wuhan University http://sheng.whu.edu.cn/

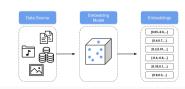

Real-World Examples:


- Medicine: All is used to discover new antibiotics (like halicin, discovered by an MIT All model), design personalized cancer treatments by analyzing a patient's tumor, and predict pandemic spread.
- Physics: At the Large Hadron Collider (LHC), Al algorithms sift through petabytes of collision data to find the incredibly rare events that might indicate new physics.
- Materials Science: All is used to discover new alloys, superconductors, and battery components with specific desired properties.

Data-centricity represents the fundamental commonality

- 3V of big data
 - Volume
 - Velocity
 - Variety
- MoocCube Dataset
 - With over 1.2 billion behavioral events, it was one of the largest public MOOC datasets of its time, enabling robust and generalizable machine learning model training.
- OpenAlex Dataset
 - A massive, open-source bibliographic database that aims to catalog the world's scholarly research and the connections between its entities: works, authors, institutions, concepts, and sources.
 - 240 million works, 210 million authors, and 120,000 concepts, 2-3 million research papers annually





What mainly varies are the data models

- Relational Model Traditional table-based structure with rows and columns
- Document Model Stores semi-structured data in JSON, XML, or BSON formats
- Graph Model Represents data as nodes and edges for complex relationships
- **Key-Value Model** Simple key-value pairs for fast retrieval
- Vector Model The most popular one in the LLM Era
 - Captures Meaning and Relationships (Semantics)
 - · Enables the Core LLM Architecture (Transformers)
 - Unifies Different Types of Data (Multi-Modality)

year={2021}, publisher={ACM New York, NY,

Key tasks in intelligent education & research: 3S

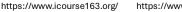
Data Summarization

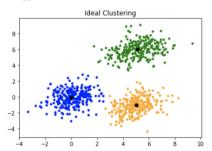
- Student grouping
- Literature review

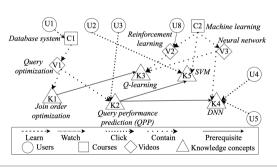
- Scientific Dataset Preparation
- Scientific Talent Seeking

• Data System

- Google Scholar
- Google Dataset Search
- Coursera



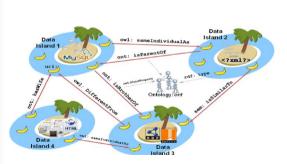



Challenge 1: Cross-model data summarization

- Clustering on vector data to divide data points into groups.
 - K-means
 - K-center

• ...

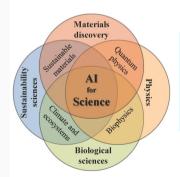
What happens with multi-model data?

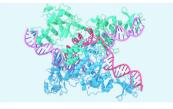


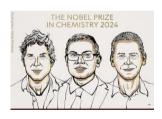

Zhang, Juntao, Sheng Wang, Yuan Sun, and Zhiyong Peng. "Prerequisite-Driven Fair Clustering on Heterogeneous Information Networks." *Proceedings of the ACM on Management of Data* 1, no. 2 (2023): 1–27.

Challenge 2: Cross-silo search over data islands

• A data island is an isolated or disconnected store of data within an organization that is not easily accessible to other departments or systems.







Challenge 3: Cross-disciplinary global research system

• Existing systems exhibit domain specificity owing to inadequate big data processing capabilities.

What is the multi-model database system?

Definition:

 A <u>multi-model database (MMDB)</u> is a database management system designed to support multiple data models against a single, integrated backend.

Main feature:

• Instead of using separate databases for different types of data, a multi-model database can handle various data formats within one unified system.

Why is multi-model database system crucial?

Simplified Architecture

- · No need to manage multiple databases
- Reduced operational complexity
- · Single system to learn and maintain

Improved Performance

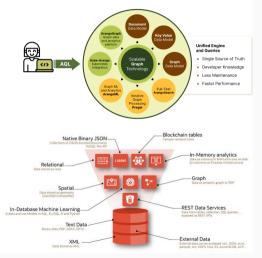
- Optimized storage and retrieval for each data model
- Faster queries by leveraging appropriate models
- Unified query language across models

Increased Flexibility

- · Handles structured, semi-structured, and unstructured data
- Adapts to changing business requirements
- Supports diverse data formats without reformatting

Cost Efficiency

- · Reduces infrastructure costs
- Lower development and maintenance overhead
- Eliminates data duplication across multiple systems



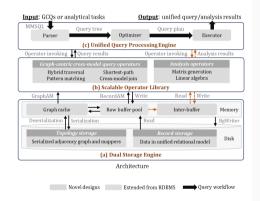
2014 Turing Award Winner for his contributions to database research

Existing MMDBs: Open-source vs. Oracle

- Popular multi-model databases include:
 - ArangoDB Supports documents, graphs, and key-value pairs
 - Azure Cosmos DB Supports multiple models via different APIs
 - Couchbase Kev-value and JSON documents
 - · Redis Key-value with extensions for other models
 - OrientDB Graphs, documents, and key-values
- Oracle 26AI
 - · Al-native functionality
 - · Multi-modal and multi-cloud data processing
 - · Performance and security enhancements

Shortcomings

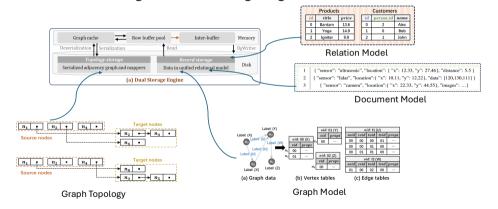
- Cross-model analysis operator is not supported
 - Systems like DuckDB only have plugin-based multi-model support
 - ArangoDB, AgensGraph simply transform multiple models into their first-model
 - None of these systems designed cross-model analysis operators
- Cross-silo distributed data search is not supported
 - Heterogeneous data formats and query languages
 - Absence of federated metadata and global optimization



heng Wang

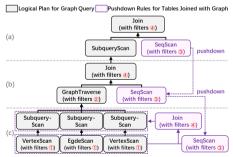
Framework of our newly developed GredoDB

Our multi-model database works by:


- Unified Storage: All data stored in a single representation
- Easy-to-use Query Language: One language to access all data models
- Global Optimization: Engine optimizes storage and retrieval based on data model

Unified Storage Engine for data variety

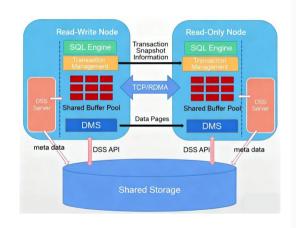
· Unified Data Modeling in the dual storage engine.



Cross-model Query Optimizations for data volume

• Cross-model Query Optimization refers to the process of optimizing queries that span multiple data models (such as relational, graph, vector, and document data) within a multi-model database system.

Optimization rules:


- 1 Predicate-level pushdown (on Graph)
- (2) Topology checking with optimized operator
- ③ Predicate-level pushdown (on Table)
- (4) Collection-level pushdown

Distributed multi-model transaction for data velocity

- Distributed architecture for big data scenarios
 - Data is stored in a shared storage
 - · Data processing adopts a distributed architecture
- Transaction management based on network protocols
- Coherent cache across nodes. orchestrated by distributed memory service (DMS)

20 / 43

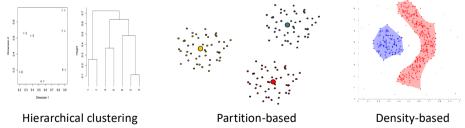
MMSQL: A novel query language for end users

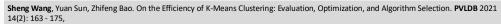
- High usability and user-friendly
 - MMSQL is backward-compatible with SQL
 - Supports parts of the SQL/JSON and SQL/PGQ standards
- Multi-model support

heng Wang

· Supports multiple models, including relational, document, graph, and vector

```
Hann of the control o
 [ WITH name1 AS subquery1 [ name2 AS subquery2 .... 11
SELECT [ DISTINCT ] select list
FROM [ relation [AS alias]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Parishers as exchan
                   I document [AS alias] [ UNWIND unnest fun(col name) [AS alias] [UNWIND ... 1]
                   graph MATCH pattern
                   vector [AS alias] ]
                                                                                                                                                                                                                                                                                                                                                                                     With Arrive authors, as do
       [ JOIN model [ON join condition [ .... ] ]
                                     [ UNWIND unnest_fun(col_name) [AS alias] [ UNWIND ...]
                                                                                                                                                                                                                                                                                               (id 2.88e "12" authors (fid 4.name "a4")()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2 12 Sid 4.name "a4
                                                                                                                                                                                                                                                                                  select ('from': a.title,'to': b.title . 'similarity': t.vec <-> a vec.vec) as ison result
   WHERE query condition 1
                                                                                                                                                                                                                                                                                             from (select id.vec from Paper vector p vec order by p vec.vec <-> Marticle vector limit 10) as t.
                                                                                                                                                                                                                                                                                                        Citations match (a : Paper)-[e: Cite]->(b : Paper),
   GROUP BY group by condition 1
                                                                                                                                                                                                                                                                                                        Paner Info n unwind icon array elements (n keywords: iden) keyword
   HAVING group condition 1
                                                                                                                                                                                                                                                                                                        Paper vector a vec
  ORDER BY [ scalar1 [, ASC | DESC111
                                                                                                                                                                                                                                                                                             where t.id = b.paper id and a.paper id = p.id and p.id = a vec.id -- condition of multi-model joining
 [ LIMIT limit number ]
                                                                                                                                                                                                                                                                                                          and n.foc.name w Sfoc name and keyword: 'varchar w Skeyword -- condition of filtering
                                                                                                                                                                                                                                                                                              order by t.vec <-> a vec.vec asc
                                                                                                                                                                                                                                                                                              limit 100
```



2025-11-8@IFIR-CCNIII


Clustering-based Data

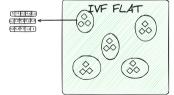
Summarization

Why clustering for data summarization?

 Clustering is a powerful technique for data summarization because it organizes large volumes of data into meaningful groups, making complex information more manageable and interpretable.

Existing clustering models and broader applications

• The *k*-means algorithm partitions data into clusters with similar characteristics, enabling efficient analysis, compression, and downstream learning.


Possible objective:

$$\sum_{C_k} \sum_{\mathsf{x}_i \in C_k} (\mathsf{x}_i - \mu_k)^2$$

This is the sum of squared errors for each data point x_i , assuming that each x_i is mapped to the closest cluster center μ_k .

Point cloud clustering

Yushuai Ji, Zepeng Liu, Sheng Wang, Yuan Sun, Zhiyong Peng. On Simplifying Large-Scale Spatial Vectors: Fast, Memory-Efficient, and Cost-Predictable k-means. ICDE, pp.863-876, 2025.

Common shortcomings

Small clusters and large clusters

- Vector-oriented only
 - One typical example is semantic grouping of students' open-ended answers.

Student Answers

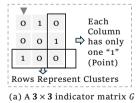
A: Parabola has highest/lowest point B: Quadratic has extremum C: I just follow textbook D: Symmetry axis -> vertex E: Curve bends -> turning point Balanced Clustering

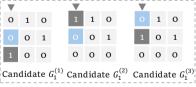
Group 1: A, B (strong) Group 2: D, E (partial) Group 3: C (needs support)

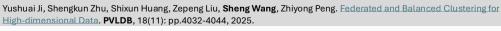
Outcome: Equitable group sizes, scalable instruction

Unbalanced Clustering

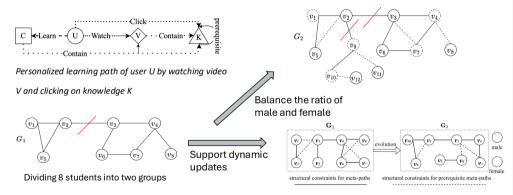
Example: Group 1: A, B, D, E Group 2: C alone


Problems:
- One isolated learner
- One giant group
- Hard to differentiate instruction


 Balanced clustering groups students into similarly sized clusters while preserving semantic similarity, ensuring no student is isolated and teaching remains scalable and fair.


Balanced clustering to generate equal-size clusters

- Our method
 - Loss function: Total loss(G) = Clustering loss(G) + Penalty Term(G)
 - Design a new indicator matrix with rows for classes and columns for points, as shown in Figure (a).
 - Select the optimal indicator matrices $\{G^1, G^2, ..., G^k\}$ to minimize the loss, as shown in Figure (b).



(b) Candidates of G_1

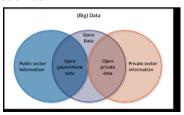
Cross-model clustering in HINs for fair student grouping

• We further achieve balanced clustering in Heterogeneous Information Network (HIN)

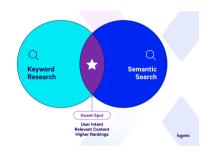
Juntao Zhang, Sheng Wang, Yuan Sun, Zhiyong Peng: Prerequisite-driven Fair Clustering on Heterogeneous Information Networks. SIGMOD 2023

Connectivity-aware Spatial

Dataset Search

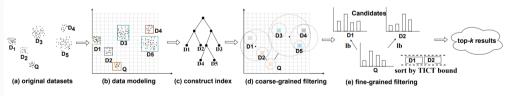

What is cross-silo dataset search and preparation?

• 90% time is spent on preparing datasets


- Data can be stored in distributed systems such as:
 - University library
 - · Open government
 - · Private owner
 - Data markets

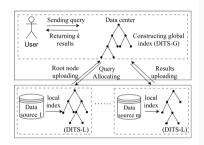
Existing systems for dataset search and preparation

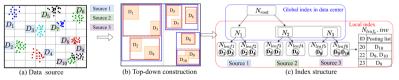
• Keyword-based search still dominates


- [1] https://dataverse.org/
- [2] https://opendata.pku.edu.cn/
- [3] https://datasetsearch.research.google.com/
- [4] https://auctus.vida-nvu.org/

Spatial dataset search by a given exemplar dataset

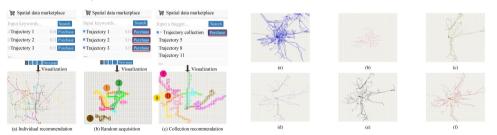
- A user has a small dataset on hand and expects to find relevant dataset to augment:
 - Q: the input query dataset
 - E.g., which is the most similar dataset to Q among D₁, D₂, ..., D₅?




Cross-silo dataset search without leaking original datasets

When the datasets are from multi sources.

(a) Query dataset (b) Overlap joinable search (c) Coverage joinable search



Connectivity-aware for dataset preparation

- Not just similar, but should be also connected and cover more space
 - · Coverage: maximize the area that the newly formed datasets cover
 - · Connectivity: the searched datasets should be linked to each other

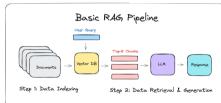
31 / 43

Spadas: a demo of spatial dataset search and preparation

- 80% datasets have geographic information
- Key functions
 - · Range query
 - Multiple similarity measures
 - Open dataset search
 - Upload private datasets for sale

http://sheng.whu.edu.cn/spadas/

Collaboration-driven Scientific


Data System

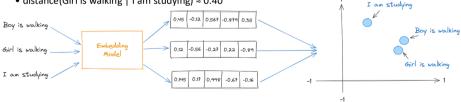
Cross-disciplinary scientific discovery

- · Existing systems
 - · DBLP, Google scholar
 - Keywords-based
- Why vector similarity search?
 - · Semantic-aware
 - Retrieval Augmented Generation (RAG)
- · Billion-scale search
 - Paper search
 - · Talent search

Vector Similarity Search

Why does Vector Similarity Search Work?

Semantic similarity ≈ geometric closeness in the vector space.


Represent texts as dense vectors.

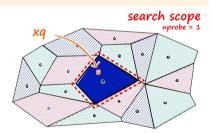
Retrieve by encoding a query, then finding nearest neighbors in a vector index.

Toy example (semantic proximity):

- distance(Boy is walking | Girl is walking) ≈ 0.02
- distance(Boy is walking | I am studying) ≈ 0.34
- distance(Girl is walking | I am studying) ≈ 0.40

♦ The embeddings of "Boy is walking" and "Girl is walking" demonstrate higher cosine similarity due to their semantic correspondence.

Yushuai Ji, Sheng Wang, Zhiyu Chen, Yuan Sun, Zhiyong Peng, Updatable Balanced Index for Fast On-device Search with Auto-selection Model.



LorIndex for efficient index routing

Why is indexing necessary for vector search?

Brute-force vector search requires computing similarity with every vector in the database, resulting in high complexity that becomes prohibitively expensive for large-scale datasets. (Especially literature data)

- Partition N vectors into K cells via clustering.
- At guery time: compute distances to K centroids: scan only nprobe lists.
- Consequently, only about nprobe/K of the corpus must be scanned, vielding significant acceleration.

Vector Set Search

- Problem: Match researchers by their publication portfolios
 - Each scholar publishes multiple papers across different topics
 - Query: Find experts whose research profile matches project needs
 - Challenge: Scholars cannot be represented by a single vector
- Why set-level matching?
 - Researchers have multi-faceted expertise
 - Research evolution over time reflected in paper collections
 - Single-vector aggregation loses topic diversity and depth signals

Scholar Profiles		Vector Set Database					
by Publications		SET ID	Vec. ID	Vector			
1 😭	Vectorizing	ulizi.	1	0.2	0.3	0.7	
		cto	2	0.2	0.2	0.1	
29		× ×	1	0.2	0.2	0.5	
		2	2	0.2	0.1	0.9	
			3	0.2	0.5	0.7	
Vector Set Search							
Query Set (Set ID:2)							
Vec. 1 2 3 Vec. 1 2 3							
Compute Set Distance - 1.0 3.1 4.3							
Get Top-k Scholars 4.2 3.0 2.0							

Stotra: a demo for global scientific discovery

End to end technology-theme trajectory capabilities for intelligence centers, S&T platforms, industry institutes, and university research offices: algorithms, data governance, sharing, intelligent retrieval and recommendation, analytics, and reporting. Vector search plays an important role.

Wang

What's novel and next in

MMDB for IE&IR?

6. What's novel and next in MMDB for IE&IR?

Multi-model Database for IE&IR: 3Vs, 3S and 3C

- 3Vs
 - Variety
 - Volume
 - Velocity

- 3Ss
 - Summarization
 - Search
 - System

- 3Cs
 - Clustering
 - Connectivity
 - Collaboration

User

Data

Algorithm

6. What's novel and next in MMDB for IE&IR?

What is next for MMDB to be more applicable to IE&IR?

Future

- The Convergence of Education and Research: Research-Informed Teaching, Teaching-Informed Research
- "Integration of science & technology, education, and talent"

Fairness

- Algorithmic Bias: Al systems can perpetuate and amplify existing biases in curricula and assessment if not
 carefully designed and audited.
- Digital Divide: Equitable access to technology and fair algorithms are crucial to prevent a new form of inequality.

Federated

Data Privacy & Ethics: Using student data for analytics (Learning Analytics) must be balanced with strong privacy
protections and ethical guidelines.

Acknowledgement

Grants

My Students

We have three Ph.D. candidates entering the job market next year. Inquiries are welcome!

PhD Student

PhD Student

PhD Student

Pengyue Li PhD Student

Zepeng Liu MS Student

Zekun Tang* MS Student

MS Student

Yue Wang MS Student

Xinxin Huang MS Student

PhD Student

Tianhao Lin PhD Student

Hang Xue PhD Student

MS Student

MS Student

MS Student

Zhonamina Liao MS Student

Xuetao Liu MS Student

Yiting Tang MS Student

Zivi Wang MS Student

Xingyu Qu BS Student (Hongyi Class)

References

Ji, Yushuai, Zepeng Liu, Sheng Wang, Yuan Sun, and Zhiyong Peng (2025). "On Simplifying Large-Scale Spatial Vectors: Fast, Memory-Efficient, and Cost-Predictable k-means". In: ICDE.

Ji, Yushuai, Sheng Wang, Zhiyu Chen, Yuan Sun, and Zhiyong Peng (2026). "Updatable Balanced Index for Fast On-device Search with Auto-selection Model". In: ICDE.

Ji. Yushuai, Shengkun Zhu, Shixun Huang, Zepeng Liu, Sheng Wang, and Zhiyong Peng (2025). "Federated and Balanced Clustering for High-dimensional Data". In: Proceedings of the VLDB Endowment 18.11, pp. 4032-4044.

Li, Yiqi, Sheng Wang, Zhiyu Chen, Shangfeng Chen, and Zhiyong Peng (2025), "Approximate Vector Set Search: A Bio-Inspired Approach for High-Dimensional Spaces". In: ICDE.

heng Wang

Li, Yiqi, Sheng Wang, Zhiyu Chen, and Zhiyong Peng (2026). "Efficient low-rank index routing for high-dimensional approximate nearest neighbor search". In: Information Processing & Management 63.2, p. 104459.

Multi-Model DBs for Intelligent Edu & Sci

- Yang, Wenzhe, Sheng Wang, Zhiyu Chen, Yuan Sun, and Zhiyong Peng (2025). "Joinable search over multi-source spatial datasets: overlap, coverage, and efficiency". In: 2025 IEEE 41st International Conference on Data Engineering (ICDE). IEEE, pp. 585–598.
- Yang, Wenzhe, Sheng Wang, Yuan Sun, and Zhiyong Peng (2022). "Fast Dataset Search with Earth Mover's Distance". In: PVLDB 15.11.
 - Zhang, Juntao, Sheng Wang, Yuan Sun, and Zhiyong Peng (2023). "Prerequisite-driven Fair Clustering on Heterogeneous Information Networks". In: *Proc. ACM Manag. Data* 1.1, pp. 1–27.
 - Zhu, Shengkun, Feiteng Nie, Jinshan Zeng, Sheng Wang, Yuan Sun, Yuan Yao, Shangfeng Chen, Quanqing Xu, and Chuanhui Yang (2025). "FedAPM: Federated Learning via ADMM with Partial Model Personalization". In: KDD.
- Zhu, Shengkun, Jinshan Zeng, Yuan Sun, Sheng Wang, Xiaodong Li, and Zhiyong Peng (2026). "Efficient k-means with Individual Fairness via Exponential Tilting". In: PVLDB.
 - Zhu, Shengkun, Jinshan Zeng, Sheng Wang, Quanqing Xu, Yuan Sun, Zhifeng Yang, Chuanhui Yang, and Zhiyong Peng (2023). "F3KM: Federated, Fair, and Fast k-means". In: *Proc. ACM Manag. Data* 1.4, pp. 1–25.

Q & A

swangcs@whu.edu.cn

_

Recent Selected Papers

(Ji, Liu, et al., 2025; Ji, Wang, et al., 2026; Ji, Zhu, et al., 2025; Li, Wang, Z. Chen, S. Chen, et al., 2025; Li, Wang, Z. Chen, and Peng, 2026; Yang, Wang, Z. Chen, et al., 2025; Yang, Wang, Sun, et al., 2022; Zhang et al., 2023; Zhu, Nie, et al., 2025; Zhu, Zeng, Sun, et al., 2026; Zhu, Zeng, Wang, et al., 2023)